Submission #728134

# Submission time Handle Problem Language Result Execution time Memory
728134 2023-04-22T03:11:45 Z SanguineChameleon Hexagonal Territory (APIO21_hexagon) C++17
100 / 100
288 ms 122624 KB
#include "hexagon.h"
#include <bits/stdc++.h>
using namespace std;

const long long mod = 1e9 + 7;
const long long one_half = (mod + 1) / 2;
const long long one_third = (mod + 1) / 3;

struct point {
	long long x, y;

	point() {};

	point(long long _x, long long _y): x(_x), y(_y) {};

	point operator*(long long d) {
		return point(x * d, y * d);
	}

	point operator+(point p2) {
		return point(x + p2.x, y + p2.y);
	}

	long long operator^(point p2) {
		return x * p2.y - y * p2.x;
	}
};

point dv[7] = {point(0, 0), point(0, 1), point(1, 1), point(1, 0), point(0, -1), point(-1, -1), point(-1, 0)};

struct line {
	int type, dir, len;
	point p1, p2;
	int id;

	line() {};

	line(int _type, int _dir, point _p1, point _p2, int _id): type(_type), dir(_dir), p1(_p1), p2(_p2), id(_id) {
		len = p2.x - p1.x + 1;
	};

	long long calc() {
		long long Ly = p1.y;
		long long Ry = p1.y + (dir == 1 ? 0 : len - 1);
		if (type == 1) {
			Ly = 1 - Ly;
			Ry = 1 - Ry;
		}
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}

	long long eval_x(long long x) {
		if (dir == 1) {
			return p1.y;
		}
		else {
			return p1.y + (x - p1.x);
		}
	}

	void shorten(long long left_x, long long right_x) {
		long long v1 = eval_x(left_x);
		long long v2 = eval_x(right_x);
		p1 = point(left_x, v1);
		p2 = point(right_x, v2);
	}
};

bool operator<(line L1, line L2) {
	int max_x = max(L1.p1.x, L2.p1.x);
	int v1 = L1.eval_x(max_x);
	int v2 = L2.eval_x(max_x);
	if (v1 != v2) {
		return v1 < v2;
	}
	else {
		return L1.type < L2.type;
	}
};

struct column {
	long long x, left_y, right_y, min_dist, left_min, right_min;

	column() {};

	column(long long _x, long long _left_y, long long _right_y): x(_x), left_y(_left_y), right_y(_right_y) {};

	column(long long _x, long long _left_y, long long _right_y, long long _min_dist, long long _left_min, long long _right_min): x(_x), left_y(_left_y), right_y(_right_y), min_dist(_min_dist), left_min(_left_min), right_min(_right_min) {};

	long long calc(long long A, long long B) {
		long long left_len = (left_min - left_y) % mod;
		long long mid_len = (right_min - left_min + 1) % mod;
		long long right_len = (right_y - right_min) % mod;
		long long A_sum = (right_y - left_y + 1) % mod;
		long long B_sum = (min_dist * mid_len % mod + (min_dist + 1 + min_dist + left_len) * left_len % mod * one_half % mod + (min_dist + 1 + min_dist + right_len) * right_len % mod * one_half % mod) % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
};

struct comp {
	line bottom, top;
	int left_x, right_x, len;
	column left_col, right_col;
	long long sum;

	comp() {};

	comp(line _bottom, line _top, int _left_x, int _right_x): bottom(_bottom), top(_top), left_x(_left_x), right_x(_right_x) {
		bottom.shorten(left_x, right_x);
		top.shorten(left_x, right_x);
		len = right_x - left_x + 1;
	}

	long long calc() {
		long long Ly = top.p1.y - bottom.p1.y + 1;
		long long Ry = top.p2.y - bottom.p2.y + 1;
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}
};

column move_right_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min + 1) {
		Col2.min_dist = Col2.left_y - (Col1.right_min + 1) + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min) {
		Col2.min_dist = Col1.left_min - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min);
	Col2.right_min = min(Col2.right_y, Col1.right_min + 1);
	return Col2;
}

column move_left_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min) {
		Col2.min_dist = Col2.left_y - Col1.right_min + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min - 1) {
		Col2.min_dist = (Col1.left_min - 1) - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min - 1);
	Col2.right_min = min(Col2.right_y, Col1.right_min);
	return Col2;
}

long long calc_inc(long long L, long long R, long long W) {
	if (L == R) {
		return W * L % mod * (L + 1) % mod * one_half % mod;
	}
	if (R == 0) {
		return 0;
	}
	L = max(L, 1LL);
	long long sum1 = (L + R) % mod * (R - L + 1) % mod * one_half % mod;
	long long sum2 = ((R * (R + 1) % mod * (R * 2 + 1) % mod) + (mod - (L - 1) * L % mod * (L * 2 - 1) % mod)) % mod * one_half % mod * one_third % mod;
	return (sum1 + sum2) % mod * one_half % mod;
}

pair<long long, column> move_right(column Col, line bottom, line top, long long left_x, long long right_x, long long A, long long B) {
	long long width = right_x - left_x + 1;
	long long height_left = top.eval_x(left_x) - bottom.eval_x(left_x) + 1;
	long long height_right = top.eval_x(right_x) - bottom.eval_x(right_x) + 1;
	long long nxt_left_y = bottom.eval_x(right_x);
	long long nxt_right_y = top.eval_x(right_x);
	long long nxt_left_min = max(Col.left_min, nxt_left_y);
	long long nxt_right_min = min(Col.right_min + right_x - left_x, nxt_right_y);
	long long nxt_min_dist = Col.min_dist + right_x - left_x;
	long long top_height_left = Col.right_y - Col.right_min;
	long long top_height_right = nxt_right_y - nxt_right_min;
	long long bottom_height_left = Col.left_min - Col.left_y;
	long long bottom_height_right = nxt_left_min - nxt_left_y;
	long long B_sum_top = calc_inc(top_height_right, top_height_left, width);
	long long B_sum_bottom = calc_inc(bottom_height_right, bottom_height_left, width);
	long long A_sum = (height_left + height_right) % mod * width % mod * one_half % mod;
	long long B_off1 = A_sum * Col.min_dist % mod;
	long long B_off2 = 0;
	if (height_left == height_right) {
		B_off2 = height_left * (width - 1) % mod * width % mod * one_half % mod;
	}
	if (height_left < height_right) {
		long long diff = (height_right - height_left) % mod;
		long long rect = height_left * (width - 1) % mod * width % mod * one_half % mod;
		long long tri = diff * (diff + 1) % mod * (diff * 2 + 1) % mod * one_half % mod * one_third % mod;
		B_off2 = (rect + tri) % mod;
	}
	if (height_left > height_right) {
		swap(height_left, height_right);
		long long diff = (height_right - height_left) % mod;
		long long rect = height_left * (width - 1) % mod * width % mod * one_half % mod;
		long long tri = diff * (diff + 1) % mod * (diff * 2 + 1) % mod * one_half % mod * one_third % mod;
		B_off2 = ((width - 1) * A_sum % mod + (mod - (rect + tri) % mod)) % mod;
		swap(height_left, height_right);
	}
	long long res = (A_sum * A + (B_sum_top + B_sum_bottom + B_off1 + B_off2) % mod * B) % mod;
	return make_pair(res, column(right_x, nxt_left_y, nxt_right_y, nxt_min_dist, nxt_left_min, nxt_right_min));
}

pair<long long, column> move_left(column Col, line bottom, line top, long long right_x, long long left_x, long long A, long long B) {
	Col.x = -Col.x;
	Col.left_y = -Col.left_y;
	Col.right_y = -Col.right_y;
	swap(Col.left_y, Col.right_y);
	Col.left_min = -Col.left_min;
	Col.right_min = -Col.right_min;
	swap(Col.left_min, Col.right_min);
	left_x = -left_x;
	right_x = -right_x;
	swap(left_x, right_x);
	bottom.p1.x = -bottom.p1.x;
	bottom.p1.y = -bottom.p1.y;
	bottom.p2.x = -bottom.p2.x;
	bottom.p2.y = -bottom.p2.y;
	swap(bottom.p1, bottom.p2);
	top.p1.x = -top.p1.x;
	top.p1.y = -top.p1.y;
	top.p2.x = -top.p2.x;
	top.p2.y = -top.p2.y;
	swap(top.p1, top.p2);
	swap(bottom, top);
	auto p_right = move_right(Col, bottom, top, left_x, right_x, A, B);
	p_right.second.left_y = -p_right.second.left_y;
	p_right.second.right_y = -p_right.second.right_y;
	swap(p_right.second.left_y, p_right.second.right_y);
	p_right.second.left_min = -p_right.second.left_min;
	p_right.second.right_min = -p_right.second.right_min;
	swap(p_right.second.left_min, p_right.second.right_min);
	return p_right;
}

vector<comp> comps;
vector<vector<int>> adj;

void dfs(int u, int par, long long A, long long B) {
	for (auto v: adj[u]) {
		if (v == par) {
			continue;
		}
		if (comps[u].right_x + 1 == comps[v].left_x) {
			comps[v].left_col = move_right_one(comps[u].right_col, column(comps[v].left_x, comps[v].bottom.p1.y, comps[v].top.p1.y));
			auto p_right = move_right(comps[v].left_col, comps[v].bottom, comps[v].top, comps[v].left_x, comps[v].right_x, A, B);
			comps[v].sum = p_right.first;
			comps[v].right_col = p_right.second;
		}
		else {
			comps[v].right_col = move_left_one(comps[u].left_col, column(comps[v].right_x, comps[v].bottom.p2.y, comps[v].top.p2.y));
			auto p_left = move_left(comps[v].right_col, comps[v].bottom, comps[v].top, comps[v].right_x, comps[v].left_x, A, B);
			comps[v].sum = p_left.first;
			comps[v].left_col = p_left.second;
		}
		dfs(v, u, A, B);
	}
}

int draw_territory(int N, int A, int B, vector<int> D, vector<int> L) {
	long long area = 0;
	point cur = point(0, 0);
	vector<point> poly(N);
	for (int i = 0; i < N; i++) {
		poly[i] = cur;
		cur = cur + (dv[D[i]] * L[i]);
	}
	for (int i = 0; i < N; i++) {
		area += poly[i] ^ poly[(i + 1) % N];
	}
	if (area < 0) {
		reverse(D.begin(), D.end());
		for (int i = 0; i < N; i++) {
			if (D[i] <= 3) {
				D[i] += 3;
			}
			else {
				D[i] -= 3;
			}
		}
		reverse(L.begin(), L.end());
		cur = point(0, 0);
		for (int i = 0; i < N; i++) {
			poly[i] = cur;
			cur = cur + (dv[D[i]] * L[i]);
		}
	}
	vector<line> lines;
	vector<int> prv_x;
	for (int i = 0; i < N; i++) {
		point prv = poly[(i + (N - 1)) % N];
		point cur = poly[i];
		point nxt1 = poly[(i + 1) % N];
		point nxt2 = poly[(i + 2) % N];
		if (cur.x < nxt1.x) {
			point p1 = cur;
			point p2 = nxt1;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x < cur.x) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (prv.x == cur.x && prv.y < cur.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y > nxt2.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(1, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
		if (cur.x > nxt1.x) {
			point p1 = nxt1;
			point p2 = cur;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x > cur.x) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (prv.x == cur.x && prv.y > cur.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y < nxt2.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(2, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
	}
	vector<pair<int, pair<int, int>>> events;
	for (int i = 0; i < (int)lines.size(); i++) {
		events.push_back(make_pair(lines[i].p1.x - 1, make_pair(2, i)));
		events.push_back(make_pair(lines[i].p1.x, make_pair(0, i)));
		events.push_back(make_pair(lines[i].p2.x, make_pair(1, i)));
	}
	sort(events.begin(), events.end());
	set<line, less<>> S;
	for (auto e: events) {
		int cur_x = e.first;
		int type = e.second.first;
		line L = lines[e.second.second];
		auto it = (type == 0 ? S.insert(L).first : S.lower_bound(L));
		if (type == 1) {
			if (it->type == 1 && next(it) != S.end()) {
				auto bottom = it;
				auto top = next(it);
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			if (it->type == 2 && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			S.erase(it);
		}
		if (type == 2) {
			if (it != S.end() && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (bottom->type == 1 && top->type == 2) {
					if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
						comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
						prv_x[bottom->id] = cur_x + 1;
						prv_x[top->id] = cur_x + 1;
					}
				}
			}
		}
	}
	adj.resize(comps.size());
	events.clear();
	for (int i = 0; i < (int)comps.size(); i++) {
		events.push_back(make_pair(comps[i].right_x + 1, make_pair(comps[i].bottom.p2.y, i)));
		events.push_back(make_pair(comps[i].left_x, make_pair(comps[i].bottom.p1.y, -i - 1)));
	}
	sort(events.begin(), events.end());
	int lid = -1;
	int rid = -1;
	for (auto e: events) {
		if (e.second.second >= 0) {
			lid = e.second.second;
		}
		else {
			rid = -e.second.second - 1;
		}
		if (lid >= 0 && rid >= 0 && comps[lid].right_x + 1 == comps[rid].left_x && max(comps[lid].bottom.p2.y, comps[rid].bottom.p1.y) <= min(comps[lid].top.p2.y + 1, comps[rid].top.p1.y)) {
			adj[lid].push_back(rid);
			adj[rid].push_back(lid);
		}
	}
	int root = -1;
	for (int i = 0; i < (int)comps.size(); i++) {
		auto C = comps[i];
		if (C.left_x <= 0 && 0 <= C.right_x) {
			int left_y = C.bottom.eval_x(0);
			int right_y = C.top.eval_x(0);
			if (left_y <= 0 && 0 <= right_y) {
				column mid_col(0, left_y, right_y, 0, 0, 0);
				auto p_left = move_left(mid_col, C.bottom, C.top, 0, C.left_x, A, B);
				auto p_right = move_right(mid_col, C.bottom, C.top, 0, C.right_x, A, B);
				comps[i].left_col = p_left.second;
				comps[i].right_col = p_right.second;
				comps[i].sum = (p_left.first + p_right.first + mod - mid_col.calc(A, B)) % mod;
				root = i;
				break;
			}
		}
	}
	dfs(root, -1, A, B);
	long long res = 0;
	for (auto C: comps) {
		res += C.sum;
		res %= mod;
	}
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 280 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 1 ms 468 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 11 ms 3228 KB Output is correct
3 Correct 3 ms 1052 KB Output is correct
4 Correct 2 ms 596 KB Output is correct
5 Correct 7 ms 1764 KB Output is correct
6 Correct 12 ms 3276 KB Output is correct
7 Correct 34 ms 9204 KB Output is correct
8 Correct 2 ms 932 KB Output is correct
9 Correct 2 ms 776 KB Output is correct
10 Correct 1 ms 596 KB Output is correct
11 Correct 52 ms 24336 KB Output is correct
12 Correct 35 ms 16612 KB Output is correct
13 Correct 29 ms 14288 KB Output is correct
14 Correct 54 ms 20108 KB Output is correct
15 Correct 2 ms 596 KB Output is correct
16 Correct 1 ms 596 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 9 ms 3196 KB Output is correct
5 Correct 2 ms 1032 KB Output is correct
6 Correct 2 ms 596 KB Output is correct
7 Correct 5 ms 1804 KB Output is correct
8 Correct 9 ms 3220 KB Output is correct
9 Correct 38 ms 9160 KB Output is correct
10 Correct 2 ms 932 KB Output is correct
11 Correct 1 ms 776 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 52 ms 24428 KB Output is correct
14 Correct 33 ms 16628 KB Output is correct
15 Correct 39 ms 14268 KB Output is correct
16 Correct 55 ms 20128 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 1 ms 596 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 87 ms 25488 KB Output is correct
21 Correct 8 ms 3204 KB Output is correct
22 Correct 3 ms 1772 KB Output is correct
23 Correct 110 ms 33308 KB Output is correct
24 Correct 187 ms 54960 KB Output is correct
25 Correct 235 ms 58968 KB Output is correct
26 Correct 115 ms 35620 KB Output is correct
27 Correct 90 ms 26768 KB Output is correct
28 Correct 57 ms 16116 KB Output is correct
29 Correct 287 ms 122076 KB Output is correct
30 Correct 147 ms 59576 KB Output is correct
31 Correct 186 ms 64656 KB Output is correct
32 Correct 272 ms 93888 KB Output is correct
33 Correct 97 ms 30784 KB Output is correct
34 Correct 30 ms 12432 KB Output is correct
35 Correct 0 ms 212 KB Output is correct
36 Correct 0 ms 212 KB Output is correct
37 Correct 0 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 0 ms 340 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 1 ms 468 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 9 ms 3200 KB Output is correct
20 Correct 2 ms 1032 KB Output is correct
21 Correct 1 ms 596 KB Output is correct
22 Correct 5 ms 1804 KB Output is correct
23 Correct 10 ms 3232 KB Output is correct
24 Correct 36 ms 9212 KB Output is correct
25 Correct 2 ms 932 KB Output is correct
26 Correct 1 ms 708 KB Output is correct
27 Correct 1 ms 596 KB Output is correct
28 Correct 52 ms 24336 KB Output is correct
29 Correct 33 ms 16612 KB Output is correct
30 Correct 27 ms 14284 KB Output is correct
31 Correct 52 ms 20148 KB Output is correct
32 Correct 1 ms 596 KB Output is correct
33 Correct 1 ms 596 KB Output is correct
34 Correct 1 ms 212 KB Output is correct
35 Correct 10 ms 3236 KB Output is correct
36 Correct 2 ms 804 KB Output is correct
37 Correct 1 ms 596 KB Output is correct
38 Correct 8 ms 3204 KB Output is correct
39 Correct 9 ms 3484 KB Output is correct
40 Correct 36 ms 11976 KB Output is correct
41 Correct 2 ms 932 KB Output is correct
42 Correct 1 ms 776 KB Output is correct
43 Correct 1 ms 596 KB Output is correct
44 Correct 61 ms 30924 KB Output is correct
45 Correct 36 ms 16972 KB Output is correct
46 Correct 38 ms 16372 KB Output is correct
47 Correct 34 ms 13296 KB Output is correct
48 Correct 2 ms 780 KB Output is correct
49 Correct 1 ms 636 KB Output is correct
50 Correct 1 ms 212 KB Output is correct
51 Correct 0 ms 212 KB Output is correct
52 Correct 0 ms 212 KB Output is correct
53 Correct 0 ms 212 KB Output is correct
54 Correct 0 ms 212 KB Output is correct
55 Correct 0 ms 212 KB Output is correct
56 Correct 1 ms 212 KB Output is correct
57 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 133 ms 45928 KB Output is correct
7 Correct 112 ms 46048 KB Output is correct
8 Correct 126 ms 48540 KB Output is correct
9 Correct 4 ms 1796 KB Output is correct
10 Correct 16 ms 6076 KB Output is correct
11 Correct 15 ms 6000 KB Output is correct
12 Correct 225 ms 88724 KB Output is correct
13 Correct 235 ms 88844 KB Output is correct
14 Correct 212 ms 75092 KB Output is correct
15 Correct 119 ms 55844 KB Output is correct
16 Correct 133 ms 62156 KB Output is correct
17 Correct 136 ms 56464 KB Output is correct
18 Correct 283 ms 106568 KB Output is correct
19 Correct 31 ms 6244 KB Output is correct
20 Correct 163 ms 82784 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 0 ms 212 KB Output is correct
24 Correct 1 ms 212 KB Output is correct
25 Correct 1 ms 212 KB Output is correct
26 Correct 1 ms 212 KB Output is correct
27 Correct 0 ms 212 KB Output is correct
28 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 596 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 468 KB Output is correct
20 Correct 0 ms 340 KB Output is correct
21 Correct 0 ms 212 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 8 ms 3164 KB Output is correct
24 Correct 3 ms 1032 KB Output is correct
25 Correct 2 ms 560 KB Output is correct
26 Correct 6 ms 1864 KB Output is correct
27 Correct 9 ms 3300 KB Output is correct
28 Correct 34 ms 9288 KB Output is correct
29 Correct 3 ms 1028 KB Output is correct
30 Correct 2 ms 776 KB Output is correct
31 Correct 1 ms 596 KB Output is correct
32 Correct 54 ms 24528 KB Output is correct
33 Correct 33 ms 16756 KB Output is correct
34 Correct 28 ms 14504 KB Output is correct
35 Correct 53 ms 20352 KB Output is correct
36 Correct 1 ms 596 KB Output is correct
37 Correct 1 ms 556 KB Output is correct
38 Correct 0 ms 212 KB Output is correct
39 Correct 90 ms 26044 KB Output is correct
40 Correct 8 ms 3204 KB Output is correct
41 Correct 4 ms 1772 KB Output is correct
42 Correct 105 ms 33856 KB Output is correct
43 Correct 199 ms 55556 KB Output is correct
44 Correct 210 ms 59476 KB Output is correct
45 Correct 116 ms 36100 KB Output is correct
46 Correct 99 ms 27312 KB Output is correct
47 Correct 63 ms 16468 KB Output is correct
48 Correct 287 ms 122624 KB Output is correct
49 Correct 148 ms 60056 KB Output is correct
50 Correct 133 ms 65248 KB Output is correct
51 Correct 266 ms 94340 KB Output is correct
52 Correct 89 ms 31292 KB Output is correct
53 Correct 28 ms 12668 KB Output is correct
54 Correct 1 ms 212 KB Output is correct
55 Correct 9 ms 3204 KB Output is correct
56 Correct 1 ms 804 KB Output is correct
57 Correct 1 ms 684 KB Output is correct
58 Correct 9 ms 3204 KB Output is correct
59 Correct 11 ms 3556 KB Output is correct
60 Correct 38 ms 12028 KB Output is correct
61 Correct 2 ms 1024 KB Output is correct
62 Correct 2 ms 776 KB Output is correct
63 Correct 1 ms 596 KB Output is correct
64 Correct 69 ms 31124 KB Output is correct
65 Correct 38 ms 17268 KB Output is correct
66 Correct 37 ms 16640 KB Output is correct
67 Correct 34 ms 13500 KB Output is correct
68 Correct 2 ms 868 KB Output is correct
69 Correct 1 ms 596 KB Output is correct
70 Correct 1 ms 212 KB Output is correct
71 Correct 130 ms 46436 KB Output is correct
72 Correct 117 ms 46576 KB Output is correct
73 Correct 131 ms 49032 KB Output is correct
74 Correct 4 ms 1812 KB Output is correct
75 Correct 15 ms 6172 KB Output is correct
76 Correct 15 ms 6000 KB Output is correct
77 Correct 231 ms 89376 KB Output is correct
78 Correct 238 ms 89416 KB Output is correct
79 Correct 218 ms 75616 KB Output is correct
80 Correct 124 ms 56340 KB Output is correct
81 Correct 139 ms 62752 KB Output is correct
82 Correct 148 ms 57028 KB Output is correct
83 Correct 288 ms 107028 KB Output is correct
84 Correct 32 ms 6776 KB Output is correct
85 Correct 174 ms 83188 KB Output is correct
86 Correct 1 ms 340 KB Output is correct
87 Correct 75 ms 25204 KB Output is correct
88 Correct 10 ms 3460 KB Output is correct
89 Correct 4 ms 1340 KB Output is correct
90 Correct 115 ms 33972 KB Output is correct
91 Correct 195 ms 58232 KB Output is correct
92 Correct 202 ms 62748 KB Output is correct
93 Correct 104 ms 40584 KB Output is correct
94 Correct 96 ms 26544 KB Output is correct
95 Correct 57 ms 17828 KB Output is correct
96 Correct 255 ms 113240 KB Output is correct
97 Correct 180 ms 69268 KB Output is correct
98 Correct 147 ms 66180 KB Output is correct
99 Correct 188 ms 59400 KB Output is correct
100 Correct 116 ms 31844 KB Output is correct
101 Correct 32 ms 12412 KB Output is correct
102 Correct 1 ms 212 KB Output is correct
103 Correct 1 ms 212 KB Output is correct
104 Correct 1 ms 212 KB Output is correct
105 Correct 1 ms 300 KB Output is correct
106 Correct 1 ms 212 KB Output is correct
107 Correct 1 ms 296 KB Output is correct
108 Correct 1 ms 300 KB Output is correct
109 Correct 1 ms 212 KB Output is correct