Submission #728120

# Submission time Handle Problem Language Result Execution time Memory
728120 2023-04-22T02:54:38 Z SanguineChameleon Hexagonal Territory (APIO21_hexagon) C++17
100 / 100
292 ms 123456 KB
#include "hexagon.h"
#include <bits/stdc++.h>
using namespace std;

const long long mod = 1e9 + 7;
const long long one_half = (mod + 1) / 2;
const long long one_third = (mod + 1) / 3;

struct point {
	long long x, y;

	point() {};

	point(long long _x, long long _y): x(_x), y(_y) {};

	point operator*(long long d) {
		return point(x * d, y * d);
	}

	point operator+(point p2) {
		return point(x + p2.x, y + p2.y);
	}

	long long operator^(point p2) {
		return x * p2.y - y * p2.x;
	}
};

point dv[7] = {point(0, 0), point(0, 1), point(1, 1), point(1, 0), point(0, -1), point(-1, -1), point(-1, 0)};

struct line {
	int type, dir, len;
	point p1, p2;
	int id;

	line() {};

	line(int _type, int _dir, point _p1, point _p2, int _id): type(_type), dir(_dir), p1(_p1), p2(_p2), id(_id) {
		len = p2.x - p1.x + 1;
	};

	long long calc() {
		long long Ly = p1.y;
		long long Ry = p1.y + (dir == 1 ? 0 : len - 1);
		if (type == 1) {
			Ly = 1 - Ly;
			Ry = 1 - Ry;
		}
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}

	long long eval_x(long long x) {
		if (dir == 1) {
			return p1.y;
		}
		else {
			return p1.y + (x - p1.x);
		}
	}

	void shorten(long long left_x, long long right_x) {
		long long v1 = eval_x(left_x);
		long long v2 = eval_x(right_x);
		p1 = point(left_x, v1);
		p2 = point(right_x, v2);
	}
};

bool operator<(line L1, line L2) {
	int max_x = max(L1.p1.x, L2.p1.x);
	int v1 = L1.eval_x(max_x);
	int v2 = L2.eval_x(max_x);
	if (v1 != v2) {
		return v1 < v2;
	}
	else {
		return L1.type < L2.type;
	}
};

struct column {
	long long x, left_y, right_y, min_dist, left_min, right_min;

	column() {};

	column(long long _x, long long _left_y, long long _right_y): x(_x), left_y(_left_y), right_y(_right_y) {};

	column(long long _x, long long _left_y, long long _right_y, long long _min_dist, long long _left_min, long long _right_min): x(_x), left_y(_left_y), right_y(_right_y), min_dist(_min_dist), left_min(_left_min), right_min(_right_min) {};

	long long calc(long long A, long long B) {
		long long left_len = (left_min - left_y) % mod;
		long long mid_len = (right_min - left_min + 1) % mod;
		long long right_len = (right_y - right_min) % mod;
		long long A_sum = (right_y - left_y + 1) % mod;
		long long B_sum = (min_dist * mid_len % mod + (min_dist + 1 + min_dist + left_len) * left_len % mod * one_half % mod + (min_dist + 1 + min_dist + right_len) * right_len % mod * one_half % mod) % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
};

struct comp {
	line bottom, top;
	int left_x, right_x, len;
	column left_col, right_col;
	long long sum;

	comp() {};

	comp(line _bottom, line _top, int _left_x, int _right_x): bottom(_bottom), top(_top), left_x(_left_x), right_x(_right_x) {
		bottom.shorten(left_x, right_x);
		top.shorten(left_x, right_x);
		len = right_x - left_x + 1;
	}

	long long calc() {
		long long Ly = top.p1.y - bottom.p1.y + 1;
		long long Ry = top.p2.y - bottom.p2.y + 1;
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}
};

column move_right_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min + 1) {
		Col2.min_dist = Col2.left_y - (Col1.right_min + 1) + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min) {
		Col2.min_dist = Col1.left_min - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min);
	Col2.right_min = min(Col2.right_y, Col1.right_min + 1);
	return Col2;
}

column move_left_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min) {
		Col2.min_dist = Col2.left_y - Col1.right_min + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min - 1) {
		Col2.min_dist = (Col1.left_min - 1) - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min - 1);
	Col2.right_min = min(Col2.right_y, Col1.right_min);
	return Col2;
}

long long calc_inc(long long L, long long R, long long W) {
	if (L == R) {
		return W * L % mod * (L + 1) % mod * one_half % mod;
	}
	if (R == 0) {
		return 0;
	}
	L = max(L, 1LL);
	long long sum1 = (L + R) % mod * (R - L + 1) % mod * one_half % mod;
	long long sum2 = ((R * (R + 1) % mod * (R * 2 + 1) % mod) + (mod - (L - 1) * L % mod * (L * 2 - 1) % mod)) % mod * one_half % mod * one_third % mod;
	return (sum1 + sum2) % mod * one_half % mod;
}

pair<long long, column> move_right(column Col, line bottom, line top, long long left_x, long long right_x, long long A, long long B) {
	long long width = right_x - left_x + 1;
	long long height_left = top.eval_x(left_x) - bottom.eval_x(left_x) + 1;
	long long height_right = top.eval_x(right_x) - bottom.eval_x(right_x) + 1;
	long long nxt_left_y = bottom.eval_x(right_x);
	long long nxt_right_y = top.eval_x(right_x);
	long long nxt_left_min = max(Col.left_min, nxt_left_y);
	long long nxt_right_min = min(Col.right_min + right_x - left_x, nxt_right_y);
	long long nxt_min_dist = Col.min_dist + right_x - left_x;
	long long top_height_left = Col.right_y - Col.right_min;
	long long top_height_right = nxt_right_y - nxt_right_min;
	long long bottom_height_left = Col.left_min - Col.left_y;
	long long bottom_height_right = nxt_left_min - nxt_left_y;
	long long B_sum_top = calc_inc(top_height_right, top_height_left, width);
	long long B_sum_bottom = calc_inc(bottom_height_right, bottom_height_left, width);
	long long A_sum = (height_left + height_right) % mod * width % mod * one_half % mod;
	long long B_off1 = A_sum * Col.min_dist % mod;
	long long B_off2 = 0;
	if (height_left == height_right) {
		B_off2 = height_left * (width - 1) % mod * width % mod * one_half % mod;
	}
	if (height_left < height_right) {
		long long diff = (height_right - height_left) % mod;
		long long rect = height_left * (width - 1) % mod * width % mod * one_half % mod;
		long long tri = diff * (diff + 1) % mod * (diff * 2 + 1) % mod * one_half % mod * one_third % mod;
		B_off2 = (rect + tri) % mod;
	}
	if (height_left > height_right) {
		swap(height_left, height_right);
		long long diff = (height_right - height_left) % mod;
		long long rect = height_left * (width - 1) % mod * width % mod * one_half % mod;
		long long tri = diff * (diff + 1) % mod * (diff * 2 + 1) % mod * one_half % mod * one_third % mod;
		B_off2 = ((width - 1) * A_sum % mod + (mod - (rect + tri) % mod)) % mod;
		swap(height_left, height_right);
	}
	long long res = (A_sum * A + (B_sum_top + B_sum_bottom + B_off1 + B_off2) % mod * B) % mod;
	return make_pair(res, column(right_x, nxt_left_y, nxt_right_y, nxt_min_dist, nxt_left_min, nxt_right_min));
}

pair<long long, column> move_left(column Col, line bottom, line top, long long right_x, long long left_x, long long A, long long B) {
	Col.x = -Col.x;
	Col.left_y = -Col.left_y;
	Col.right_y = -Col.right_y;
	swap(Col.left_y, Col.right_y);
	Col.left_min = -Col.left_min;
	Col.right_min = -Col.right_min;
	swap(Col.left_min, Col.right_min);
	left_x = -left_x;
	right_x = -right_x;
	swap(left_x, right_x);
	bottom.p1.x = -bottom.p1.x;
	bottom.p1.y = -bottom.p1.y;
	bottom.p2.x = -bottom.p2.x;
	bottom.p2.y = -bottom.p2.y;
	swap(bottom.p1, bottom.p2);
	top.p1.x = -top.p1.x;
	top.p1.y = -top.p1.y;
	top.p2.x = -top.p2.x;
	top.p2.y = -top.p2.y;
	swap(top.p1, top.p2);
	swap(bottom, top);
	auto p_right = move_right(Col, bottom, top, left_x, right_x, A, B);
	p_right.second.left_y = -p_right.second.left_y;
	p_right.second.right_y = -p_right.second.right_y;
	swap(p_right.second.left_y, p_right.second.right_y);
	p_right.second.left_min = -p_right.second.left_min;
	p_right.second.right_min = -p_right.second.right_min;
	swap(p_right.second.left_min, p_right.second.right_min);
	return p_right;
}

vector<comp> comps;
vector<vector<int>> adj;

void dfs(int u, int par, long long A, long long B) {
	for (auto v: adj[u]) {
		if (v == par) {
			continue;
		}
		if (comps[u].right_x + 1 == comps[v].left_x) {
			comps[v].left_col = move_right_one(comps[u].right_col, column(comps[v].left_x, comps[v].bottom.p1.y, comps[v].top.p1.y));
			auto p_right = move_right(comps[v].left_col, comps[v].bottom, comps[v].top, comps[v].left_x, comps[v].right_x, A, B);
			comps[v].sum = p_right.first;
			comps[v].right_col = p_right.second;
		}
		else {
			comps[v].right_col = move_left_one(comps[u].left_col, column(comps[v].right_x, comps[v].bottom.p2.y, comps[v].top.p2.y));
			auto p_left = move_left(comps[v].right_col, comps[v].bottom, comps[v].top, comps[v].right_x, comps[v].left_x, A, B);
			comps[v].sum = p_left.first;
			comps[v].left_col = p_left.second;
		}
		dfs(v, u, A, B);
	}
}

int draw_territory(int N, int A, int B, vector<int> D, vector<int> L) {
	long long area = 0;
	point cur = point(0, 0);
	vector<point> poly(N);
	for (int i = 0; i < N; i++) {
		poly[i] = cur;
		cur = cur + (dv[D[i]] * L[i]);
	}
	for (int i = 0; i < N; i++) {
		area += poly[i] ^ poly[(i + 1) % N];
	}
	if (area < 0) {
		reverse(D.begin(), D.end());
		for (int i = 0; i < N; i++) {
			if (D[i] <= 3) {
				D[i] += 3;
			}
			else {
				D[i] -= 3;
			}
		}
		reverse(L.begin(), L.end());
		cur = point(0, 0);
		for (int i = 0; i < N; i++) {
			poly[i] = cur;
			cur = cur + (dv[D[i]] * L[i]);
		}
	}
	vector<line> lines;
	vector<int> prv_x;
	for (int i = 0; i < N; i++) {
		point prv = poly[(i + (N - 1)) % N];
		point cur = poly[i];
		point nxt1 = poly[(i + 1) % N];
		point nxt2 = poly[(i + 2) % N];
		if (cur.x < nxt1.x) {
			point p1 = cur;
			point p2 = nxt1;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x < cur.x) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (prv.x == cur.x && prv.y < cur.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y > nxt2.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(1, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
		if (cur.x > nxt1.x) {
			point p1 = nxt1;
			point p2 = cur;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x > cur.x) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (prv.x == cur.x && prv.y > cur.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y < nxt2.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(2, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
	}
	vector<pair<int, pair<int, int>>> events;
	for (int i = 0; i < (int)lines.size(); i++) {
		events.push_back(make_pair(lines[i].p1.x - 1, make_pair(2, i)));
		events.push_back(make_pair(lines[i].p1.x, make_pair(0, i)));
		events.push_back(make_pair(lines[i].p2.x, make_pair(1, i)));
	}
	sort(events.begin(), events.end());
	set<line, less<>> S;
	for (auto e: events) {
		int cur_x = e.first;
		int type = e.second.first;
		line L = lines[e.second.second];
		auto it = (type == 0 ? S.insert(L).first : S.lower_bound(L));
		if (type == 1) {
			if (it->type == 1 && next(it) != S.end()) {
				auto bottom = it;
				auto top = next(it);
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			if (it->type == 2 && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			S.erase(it);
		}
		if (type == 2) {
			if (it != S.end() && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (bottom->type == 1 && top->type == 2) {
					if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
						comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
						prv_x[bottom->id] = cur_x + 1;
						prv_x[top->id] = cur_x + 1;
					}
				}
			}
		}
	}
	adj.resize(comps.size());
	events.clear();
	for (int i = 0; i < (int)comps.size(); i++) {
		events.push_back(make_pair(comps[i].right_x + 1, make_pair(comps[i].bottom.p2.y, i)));
		events.push_back(make_pair(comps[i].left_x, make_pair(comps[i].bottom.p1.y, -i - 1)));
	}
	sort(events.begin(), events.end());
	int lid = -1;
	int rid = -1;
	for (auto e: events) {
		if (e.second.second >= 0) {
			lid = e.second.second;
		}
		else {
			rid = -e.second.second - 1;
		}
		if (lid >= 0 && rid >= 0 && comps[lid].right_x + 1 == comps[rid].left_x && max(comps[lid].bottom.p2.y, comps[rid].bottom.p1.y) <= min(comps[lid].top.p2.y + 1, comps[rid].top.p1.y)) {
			adj[lid].push_back(rid);
			adj[rid].push_back(lid);
		}
	}
	int root = -1;
	for (int i = 0; i < (int)comps.size(); i++) {
		auto C = comps[i];
		if (C.left_x <= 0 && 0 <= C.right_x) {
			int left_y = C.bottom.eval_x(0);
			int right_y = C.top.eval_x(0);
			if (left_y <= 0 && 0 <= right_y) {
				column mid_col(0, left_y, right_y, 0, 0, 0);
				auto p_left = move_left(mid_col, C.bottom, C.top, 0, C.left_x, A, B);
				auto p_right = move_right(mid_col, C.bottom, C.top, 0, C.right_x, A, B);
				comps[i].left_col = p_left.second;
				comps[i].right_col = p_right.second;
				comps[i].sum = (p_left.first + p_right.first + mod - mid_col.calc(A, B)) % mod;
				root = i;
				break;
			}
		}
	}
	dfs(root, -1, A, B);
	long long res = 0;
	for (auto C: comps) {
		res += C.sum;
		res %= mod;
	}
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 304 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 296 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 300 KB Output is correct
9 Correct 1 ms 304 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 300 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 1 ms 468 KB Output is correct
14 Correct 1 ms 424 KB Output is correct
15 Correct 1 ms 424 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 304 KB Output is correct
20 Correct 1 ms 296 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 8 ms 3304 KB Output is correct
3 Correct 2 ms 1032 KB Output is correct
4 Correct 2 ms 596 KB Output is correct
5 Correct 5 ms 1772 KB Output is correct
6 Correct 10 ms 3256 KB Output is correct
7 Correct 28 ms 9236 KB Output is correct
8 Correct 2 ms 932 KB Output is correct
9 Correct 1 ms 776 KB Output is correct
10 Correct 1 ms 596 KB Output is correct
11 Correct 53 ms 24528 KB Output is correct
12 Correct 35 ms 16736 KB Output is correct
13 Correct 30 ms 14504 KB Output is correct
14 Correct 53 ms 20368 KB Output is correct
15 Correct 1 ms 724 KB Output is correct
16 Correct 1 ms 596 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 0 ms 300 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 296 KB Output is correct
3 Correct 1 ms 296 KB Output is correct
4 Correct 8 ms 3304 KB Output is correct
5 Correct 2 ms 1128 KB Output is correct
6 Correct 1 ms 596 KB Output is correct
7 Correct 6 ms 1784 KB Output is correct
8 Correct 9 ms 3300 KB Output is correct
9 Correct 30 ms 9332 KB Output is correct
10 Correct 2 ms 932 KB Output is correct
11 Correct 1 ms 776 KB Output is correct
12 Correct 1 ms 556 KB Output is correct
13 Correct 51 ms 24512 KB Output is correct
14 Correct 33 ms 16780 KB Output is correct
15 Correct 27 ms 14436 KB Output is correct
16 Correct 55 ms 20384 KB Output is correct
17 Correct 1 ms 688 KB Output is correct
18 Correct 2 ms 596 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 89 ms 26052 KB Output is correct
21 Correct 8 ms 3204 KB Output is correct
22 Correct 4 ms 1752 KB Output is correct
23 Correct 101 ms 34120 KB Output is correct
24 Correct 171 ms 56108 KB Output is correct
25 Correct 182 ms 60152 KB Output is correct
26 Correct 100 ms 36236 KB Output is correct
27 Correct 86 ms 27332 KB Output is correct
28 Correct 54 ms 16464 KB Output is correct
29 Correct 248 ms 123452 KB Output is correct
30 Correct 136 ms 60816 KB Output is correct
31 Correct 124 ms 65808 KB Output is correct
32 Correct 258 ms 94912 KB Output is correct
33 Correct 87 ms 31224 KB Output is correct
34 Correct 29 ms 12632 KB Output is correct
35 Correct 1 ms 304 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 300 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 428 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 300 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 1 ms 468 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 8 ms 3304 KB Output is correct
20 Correct 2 ms 1080 KB Output is correct
21 Correct 1 ms 596 KB Output is correct
22 Correct 5 ms 1804 KB Output is correct
23 Correct 9 ms 3300 KB Output is correct
24 Correct 28 ms 9292 KB Output is correct
25 Correct 2 ms 932 KB Output is correct
26 Correct 1 ms 776 KB Output is correct
27 Correct 1 ms 596 KB Output is correct
28 Correct 51 ms 24496 KB Output is correct
29 Correct 39 ms 16812 KB Output is correct
30 Correct 30 ms 14444 KB Output is correct
31 Correct 52 ms 20364 KB Output is correct
32 Correct 1 ms 596 KB Output is correct
33 Correct 1 ms 596 KB Output is correct
34 Correct 1 ms 212 KB Output is correct
35 Correct 9 ms 3304 KB Output is correct
36 Correct 2 ms 804 KB Output is correct
37 Correct 1 ms 684 KB Output is correct
38 Correct 9 ms 3204 KB Output is correct
39 Correct 9 ms 3556 KB Output is correct
40 Correct 33 ms 12024 KB Output is correct
41 Correct 2 ms 1060 KB Output is correct
42 Correct 2 ms 776 KB Output is correct
43 Correct 1 ms 596 KB Output is correct
44 Correct 60 ms 31200 KB Output is correct
45 Correct 37 ms 17260 KB Output is correct
46 Correct 36 ms 16628 KB Output is correct
47 Correct 35 ms 13496 KB Output is correct
48 Correct 2 ms 780 KB Output is correct
49 Correct 1 ms 596 KB Output is correct
50 Correct 1 ms 212 KB Output is correct
51 Correct 1 ms 212 KB Output is correct
52 Correct 0 ms 212 KB Output is correct
53 Correct 1 ms 212 KB Output is correct
54 Correct 1 ms 212 KB Output is correct
55 Correct 1 ms 304 KB Output is correct
56 Correct 1 ms 212 KB Output is correct
57 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 127 ms 46756 KB Output is correct
7 Correct 118 ms 46740 KB Output is correct
8 Correct 130 ms 49420 KB Output is correct
9 Correct 4 ms 1796 KB Output is correct
10 Correct 14 ms 6128 KB Output is correct
11 Correct 14 ms 6128 KB Output is correct
12 Correct 232 ms 90040 KB Output is correct
13 Correct 227 ms 90248 KB Output is correct
14 Correct 227 ms 76436 KB Output is correct
15 Correct 122 ms 56952 KB Output is correct
16 Correct 137 ms 63300 KB Output is correct
17 Correct 137 ms 57532 KB Output is correct
18 Correct 281 ms 107852 KB Output is correct
19 Correct 33 ms 7280 KB Output is correct
20 Correct 162 ms 83668 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 1 ms 212 KB Output is correct
24 Correct 1 ms 212 KB Output is correct
25 Correct 1 ms 212 KB Output is correct
26 Correct 1 ms 212 KB Output is correct
27 Correct 1 ms 212 KB Output is correct
28 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 304 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 300 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 596 KB Output is correct
17 Correct 1 ms 428 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 468 KB Output is correct
20 Correct 1 ms 300 KB Output is correct
21 Correct 1 ms 300 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
23 Correct 9 ms 3272 KB Output is correct
24 Correct 2 ms 1032 KB Output is correct
25 Correct 1 ms 596 KB Output is correct
26 Correct 5 ms 1828 KB Output is correct
27 Correct 10 ms 3244 KB Output is correct
28 Correct 30 ms 9272 KB Output is correct
29 Correct 2 ms 1024 KB Output is correct
30 Correct 2 ms 776 KB Output is correct
31 Correct 1 ms 596 KB Output is correct
32 Correct 51 ms 24588 KB Output is correct
33 Correct 33 ms 16796 KB Output is correct
34 Correct 28 ms 14520 KB Output is correct
35 Correct 53 ms 20412 KB Output is correct
36 Correct 1 ms 596 KB Output is correct
37 Correct 1 ms 556 KB Output is correct
38 Correct 1 ms 300 KB Output is correct
39 Correct 82 ms 26124 KB Output is correct
40 Correct 8 ms 3204 KB Output is correct
41 Correct 4 ms 1772 KB Output is correct
42 Correct 107 ms 34008 KB Output is correct
43 Correct 175 ms 56084 KB Output is correct
44 Correct 186 ms 60228 KB Output is correct
45 Correct 108 ms 36288 KB Output is correct
46 Correct 84 ms 27292 KB Output is correct
47 Correct 54 ms 16356 KB Output is correct
48 Correct 252 ms 123456 KB Output is correct
49 Correct 125 ms 60816 KB Output is correct
50 Correct 136 ms 65912 KB Output is correct
51 Correct 292 ms 94916 KB Output is correct
52 Correct 96 ms 31260 KB Output is correct
53 Correct 31 ms 12660 KB Output is correct
54 Correct 1 ms 296 KB Output is correct
55 Correct 9 ms 3308 KB Output is correct
56 Correct 2 ms 804 KB Output is correct
57 Correct 1 ms 596 KB Output is correct
58 Correct 9 ms 3268 KB Output is correct
59 Correct 9 ms 3484 KB Output is correct
60 Correct 34 ms 12068 KB Output is correct
61 Correct 2 ms 896 KB Output is correct
62 Correct 2 ms 776 KB Output is correct
63 Correct 1 ms 596 KB Output is correct
64 Correct 67 ms 31176 KB Output is correct
65 Correct 42 ms 17268 KB Output is correct
66 Correct 37 ms 16500 KB Output is correct
67 Correct 32 ms 13428 KB Output is correct
68 Correct 1 ms 780 KB Output is correct
69 Correct 1 ms 560 KB Output is correct
70 Correct 1 ms 300 KB Output is correct
71 Correct 124 ms 45872 KB Output is correct
72 Correct 110 ms 46020 KB Output is correct
73 Correct 129 ms 48532 KB Output is correct
74 Correct 5 ms 1796 KB Output is correct
75 Correct 13 ms 6000 KB Output is correct
76 Correct 13 ms 6000 KB Output is correct
77 Correct 228 ms 88724 KB Output is correct
78 Correct 225 ms 88816 KB Output is correct
79 Correct 201 ms 75100 KB Output is correct
80 Correct 115 ms 55836 KB Output is correct
81 Correct 133 ms 62164 KB Output is correct
82 Correct 136 ms 56516 KB Output is correct
83 Correct 282 ms 106608 KB Output is correct
84 Correct 30 ms 6140 KB Output is correct
85 Correct 158 ms 82676 KB Output is correct
86 Correct 0 ms 340 KB Output is correct
87 Correct 71 ms 24708 KB Output is correct
88 Correct 9 ms 3332 KB Output is correct
89 Correct 3 ms 1212 KB Output is correct
90 Correct 110 ms 33576 KB Output is correct
91 Correct 168 ms 57704 KB Output is correct
92 Correct 186 ms 62304 KB Output is correct
93 Correct 109 ms 40056 KB Output is correct
94 Correct 87 ms 26084 KB Output is correct
95 Correct 57 ms 17488 KB Output is correct
96 Correct 236 ms 112732 KB Output is correct
97 Correct 132 ms 68856 KB Output is correct
98 Correct 128 ms 65564 KB Output is correct
99 Correct 165 ms 58952 KB Output is correct
100 Correct 96 ms 31324 KB Output is correct
101 Correct 28 ms 12148 KB Output is correct
102 Correct 0 ms 212 KB Output is correct
103 Correct 0 ms 212 KB Output is correct
104 Correct 0 ms 212 KB Output is correct
105 Correct 0 ms 212 KB Output is correct
106 Correct 0 ms 212 KB Output is correct
107 Correct 0 ms 212 KB Output is correct
108 Correct 0 ms 212 KB Output is correct
109 Correct 1 ms 212 KB Output is correct