Submission #728117

# Submission time Handle Problem Language Result Execution time Memory
728117 2023-04-22T02:52:12 Z SanguineChameleon Hexagonal Territory (APIO21_hexagon) C++17
100 / 100
294 ms 122472 KB
#include "hexagon.h"
#include <bits/stdc++.h>
using namespace std;

const long long mod = 1e9 + 7;
const long long one_half = (mod + 1) / 2;
const long long one_third = (mod + 1) / 3;

struct point {
	long long x, y;

	point() {};

	point(long long _x, long long _y): x(_x), y(_y) {};

	point operator*(long long d) {
		return point(x * d, y * d);
	}

	point operator+(point p2) {
		return point(x + p2.x, y + p2.y);
	}

	long long operator^(point p2) {
		return x * p2.y - y * p2.x;
	}
};

point dv[7] = {point(0, 0), point(0, 1), point(1, 1), point(1, 0), point(0, -1), point(-1, -1), point(-1, 0)};

ostream& operator<<(ostream &out, point p) {
	out << "(" << p.x << "," << p.y << ")";
	return out;
}

struct line {
	int type, dir, len;
	point p1, p2;
	int id;

	line() {};

	line(int _type, int _dir, point _p1, point _p2, int _id): type(_type), dir(_dir), p1(_p1), p2(_p2), id(_id) {
		len = p2.x - p1.x + 1;
	};

	long long calc() {
		long long Ly = p1.y;
		long long Ry = p1.y + (dir == 1 ? 0 : len - 1);
		if (type == 1) {
			Ly = 1 - Ly;
			Ry = 1 - Ry;
		}
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}

	long long eval_x(long long x) {
		if (dir == 1) {
			return p1.y;
		}
		else {
			return p1.y + (x - p1.x);
		}
	}

	void shorten(long long left_x, long long right_x) {
		long long v1 = eval_x(left_x);
		long long v2 = eval_x(right_x);
		p1 = point(left_x, v1);
		p2 = point(right_x, v2);
	}
};

ostream& operator<<(ostream &out, line L) {
	if (L.type == 1) {
		out << "(bottom,";
	}
	else {
		out << "(top,";
	}
	out << L.p1 << "," << L.p2 << ")";
	return out;
}

bool operator<(line L1, line L2) {
	int max_x = max(L1.p1.x, L2.p1.x);
	int v1 = L1.eval_x(max_x);
	int v2 = L2.eval_x(max_x);
	if (v1 != v2) {
		return v1 < v2;
	}
	else {
		return L1.type < L2.type;
	}
};

struct column {
	long long x, left_y, right_y, min_dist, left_min, right_min;

	column() {};

	column(long long _x, long long _left_y, long long _right_y): x(_x), left_y(_left_y), right_y(_right_y) {};

	column(long long _x, long long _left_y, long long _right_y, long long _min_dist, long long _left_min, long long _right_min): x(_x), left_y(_left_y), right_y(_right_y), min_dist(_min_dist), left_min(_left_min), right_min(_right_min) {};

	long long calc(long long A, long long B) {
		long long left_len = (left_min - left_y) % mod;
		long long mid_len = (right_min - left_min + 1) % mod;
		long long right_len = (right_y - right_min) % mod;
		long long A_sum = (right_y - left_y + 1) % mod;
		long long B_sum = (min_dist * mid_len % mod + (min_dist + 1 + min_dist + left_len) * left_len % mod * one_half % mod + (min_dist + 1 + min_dist + right_len) * right_len % mod * one_half % mod) % mod;
		return (A_sum * A + B_sum * B) % mod;
	}

	long long calc_top() {
		long long top_len = (right_y - right_min) % mod;
		return top_len * (top_len + 1) % mod * one_half % mod;
	}

	long long calc_bottom() {
		long long bottom_len = (left_min - left_y) % mod;
		return bottom_len * (bottom_len + 1) % mod * one_half % mod;
	}
};

ostream& operator<<(ostream &out, column Col) {
	out << "(" << Col.x << ",(" << Col.left_y << "," << Col.right_y << "),min=" << Col.min_dist << ",(" << Col.left_min << "," << Col.right_min << "))";
	return out;
}

struct comp {
	line bottom, top;
	int left_x, right_x, len;
	column left_col, right_col;
	long long sum;

	comp() {};

	comp(line _bottom, line _top, int _left_x, int _right_x): bottom(_bottom), top(_top), left_x(_left_x), right_x(_right_x) {
		bottom.shorten(left_x, right_x);
		top.shorten(left_x, right_x);
		len = right_x - left_x + 1;
	}

	long long calc() {
		long long Ly = top.p1.y - bottom.p1.y + 1;
		long long Ry = top.p2.y - bottom.p2.y + 1;
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}
};

ostream& operator<<(ostream &out, comp C) {
	out << "(" << C.bottom << "," << C.top << ",(" << C.left_x << "," << C.right_x << "))";
	return out;
}

column move_right_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min + 1) {
		Col2.min_dist = Col2.left_y - (Col1.right_min + 1) + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min) {
		Col2.min_dist = Col1.left_min - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min);
	Col2.right_min = min(Col2.right_y, Col1.right_min + 1);
	return Col2;
}

column move_left_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min) {
		Col2.min_dist = Col2.left_y - Col1.right_min + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min - 1) {
		Col2.min_dist = (Col1.left_min - 1) - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min - 1);
	Col2.right_min = min(Col2.right_y, Col1.right_min);
	return Col2;
}

long long calc_inc(long long L, long long R, long long W) {
	if (L == R) {
		return W * L % mod * (L + 1) % mod * one_half % mod;
	}
	if (R == 0) {
		return 0;
	}
	L = max(L, 1LL);
	long long sum1 = (L + R) % mod * (R - L + 1) % mod * one_half % mod;
	long long sum2 = ((R * (R + 1) % mod * (R * 2 + 1) % mod) + (mod - (L - 1) * L % mod * (L * 2 - 1) % mod)) % mod * one_half % mod * one_third % mod;
	return (sum1 + sum2) % mod * one_half % mod;
}

pair<long long, column> move_right(column Col, line bottom, line top, long long left_x, long long right_x, long long A, long long B) {
	long long width = right_x - left_x + 1;
	long long height_left = top.eval_x(left_x) - bottom.eval_x(left_x) + 1;
	long long height_right = top.eval_x(right_x) - bottom.eval_x(right_x) + 1;
	long long nxt_left_y = bottom.eval_x(right_x);
	long long nxt_right_y = top.eval_x(right_x);
	long long nxt_left_min = max(Col.left_min, nxt_left_y);
	long long nxt_right_min = min(Col.right_min + right_x - left_x, nxt_right_y);
	long long nxt_min_dist = Col.min_dist + right_x - left_x;
	long long top_height_left = Col.right_y - Col.right_min;
	long long top_height_right = nxt_right_y - nxt_right_min;
	long long bottom_height_left = Col.left_min - Col.left_y;
	long long bottom_height_right = nxt_left_min - nxt_left_y;
	long long B_sum_top = calc_inc(top_height_right, top_height_left, width);
	long long B_sum_bottom = calc_inc(bottom_height_right, bottom_height_left, width);
	long long A_sum = (height_left + height_right) % mod * width % mod * one_half % mod;
	long long B_off1 = A_sum * Col.min_dist % mod;
	long long B_off2 = 0;
	if (height_left == height_right) {
		B_off2 = height_left * (width - 1) % mod * width % mod * one_half % mod;
	}
	if (height_left < height_right) {
		long long diff = (height_right - height_left) % mod;
		long long rect = height_left * (width - 1) % mod * width % mod * one_half % mod;
		long long tri = diff * (diff + 1) % mod * (diff * 2 + 1) % mod * one_half % mod * one_third % mod;
		B_off2 = (rect + tri) % mod;
	}
	if (height_left > height_right) {
		swap(height_left, height_right);
		long long diff = (height_right - height_left) % mod;
		long long rect = height_left * (width - 1) % mod * width % mod * one_half % mod;
		long long tri = diff * (diff + 1) % mod * (diff * 2 + 1) % mod * one_half % mod * one_third % mod;
		B_off2 = ((width - 1) * A_sum % mod + (mod - (rect + tri) % mod)) % mod;
		swap(height_left, height_right);
	}
	long long res = (A_sum * A + (B_sum_top + B_sum_bottom + B_off1 + B_off2) % mod * B) % mod;
	return make_pair(res, column(right_x, nxt_left_y, nxt_right_y, nxt_min_dist, nxt_left_min, nxt_right_min));
}

pair<long long, column> move_left(column Col, line bottom, line top, long long right_x, long long left_x, long long A, long long B) {
	Col.x = -Col.x;
	Col.left_y = -Col.left_y;
	Col.right_y = -Col.right_y;
	swap(Col.left_y, Col.right_y);
	Col.left_min = -Col.left_min;
	Col.right_min = -Col.right_min;
	swap(Col.left_min, Col.right_min);
	left_x = -left_x;
	right_x = -right_x;
	swap(left_x, right_x);
	bottom.p1.x = -bottom.p1.x;
	bottom.p1.y = -bottom.p1.y;
	bottom.p2.x = -bottom.p2.x;
	bottom.p2.y = -bottom.p2.y;
	swap(bottom.p1, bottom.p2);
	top.p1.x = -top.p1.x;
	top.p1.y = -top.p1.y;
	top.p2.x = -top.p2.x;
	top.p2.y = -top.p2.y;
	swap(top.p1, top.p2);
	swap(bottom, top);
	auto p_right = move_right(Col, bottom, top, left_x, right_x, A, B);
	p_right.second.left_y = -p_right.second.left_y;
	p_right.second.right_y = -p_right.second.right_y;
	swap(p_right.second.left_y, p_right.second.right_y);
	p_right.second.left_min = -p_right.second.left_min;
	p_right.second.right_min = -p_right.second.right_min;
	swap(p_right.second.left_min, p_right.second.right_min);
	return p_right;
}

vector<comp> comps;
vector<vector<int>> adj;

void dfs(int u, int par, long long A, long long B) {
	for (auto v: adj[u]) {
		if (v == par) {
			continue;
		}
		if (comps[u].right_x + 1 == comps[v].left_x) {
			comps[v].left_col = move_right_one(comps[u].right_col, column(comps[v].left_x, comps[v].bottom.p1.y, comps[v].top.p1.y));
			auto p_right = move_right(comps[v].left_col, comps[v].bottom, comps[v].top, comps[v].left_x, comps[v].right_x, A, B);
			comps[v].sum = p_right.first;
			comps[v].right_col = p_right.second;
		}
		else {
			comps[v].right_col = move_left_one(comps[u].left_col, column(comps[v].right_x, comps[v].bottom.p2.y, comps[v].top.p2.y));
			auto p_left = move_left(comps[v].right_col, comps[v].bottom, comps[v].top, comps[v].right_x, comps[v].left_x, A, B);
			comps[v].sum = p_left.first;
			comps[v].left_col = p_left.second;
		}
		dfs(v, u, A, B);
	}
}

int draw_territory(int N, int A, int B, vector<int> D, vector<int> L) {
	long long area = 0;
	point cur = point(0, 0);
	vector<point> poly(N);
	for (int i = 0; i < N; i++) {
		poly[i] = cur;
		cur = cur + (dv[D[i]] * L[i]);
	}
	for (int i = 0; i < N; i++) {
		area += poly[i] ^ poly[(i + 1) % N];
	}
	if (area < 0) {
		reverse(D.begin(), D.end());
		for (int i = 0; i < N; i++) {
			if (D[i] <= 3) {
				D[i] += 3;
			}
			else {
				D[i] -= 3;
			}
		}
		reverse(L.begin(), L.end());
		cur = point(0, 0);
		for (int i = 0; i < N; i++) {
			poly[i] = cur;
			cur = cur + (dv[D[i]] * L[i]);
		}
	}
	vector<line> lines;
	vector<int> prv_x;
	for (int i = 0; i < N; i++) {
		point prv = poly[(i + (N - 1)) % N];
		point cur = poly[i];
		point nxt1 = poly[(i + 1) % N];
		point nxt2 = poly[(i + 2) % N];
		if (cur.x < nxt1.x) {
			point p1 = cur;
			point p2 = nxt1;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x < cur.x) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (prv.x == cur.x && prv.y < cur.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y > nxt2.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(1, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
		if (cur.x > nxt1.x) {
			point p1 = nxt1;
			point p2 = cur;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x > cur.x) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (prv.x == cur.x && prv.y > cur.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y < nxt2.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(2, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
	}
	vector<pair<int, pair<int, int>>> events;
	for (int i = 0; i < (int)lines.size(); i++) {
		events.push_back(make_pair(lines[i].p1.x - 1, make_pair(2, i)));
		events.push_back(make_pair(lines[i].p1.x, make_pair(0, i)));
		events.push_back(make_pair(lines[i].p2.x, make_pair(1, i)));
	}
	sort(events.begin(), events.end());
	set<line, less<>> S;
	for (auto e: events) {
		int cur_x = e.first;
		int type = e.second.first;
		line L = lines[e.second.second];
		auto it = (type == 0 ? S.insert(L).first : S.lower_bound(L));
		if (type == 1) {
			if (it->type == 1 && next(it) != S.end()) {
				auto bottom = it;
				auto top = next(it);
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			if (it->type == 2 && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			S.erase(it);
		}
		if (type == 2) {
			if (it != S.end() && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (bottom->type == 1 && top->type == 2) {
					if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
						comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
						prv_x[bottom->id] = cur_x + 1;
						prv_x[top->id] = cur_x + 1;
					}
				}
			}
		}
	}
	adj.resize(comps.size());
	events.clear();
	for (int i = 0; i < (int)comps.size(); i++) {
		events.push_back(make_pair(comps[i].right_x + 1, make_pair(comps[i].bottom.p2.y, i)));
		events.push_back(make_pair(comps[i].left_x, make_pair(comps[i].bottom.p1.y, -i - 1)));
	}
	sort(events.begin(), events.end());
	int lid = -1;
	int rid = -1;
	for (auto e: events) {
		if (e.second.second >= 0) {
			lid = e.second.second;
		}
		else {
			rid = -e.second.second - 1;
		}
		if (lid >= 0 && rid >= 0 && comps[lid].right_x + 1 == comps[rid].left_x && max(comps[lid].bottom.p2.y, comps[rid].bottom.p1.y) <= min(comps[lid].top.p2.y + 1, comps[rid].top.p1.y)) {
			adj[lid].push_back(rid);
			adj[rid].push_back(lid);
		}
	}
	int root = -1;
	for (int i = 0; i < (int)comps.size(); i++) {
		auto C = comps[i];
		if (C.left_x <= 0 && 0 <= C.right_x) {
			int left_y = C.bottom.eval_x(0);
			int right_y = C.top.eval_x(0);
			if (left_y <= 0 && 0 <= right_y) {
				column mid_col(0, left_y, right_y, 0, 0, 0);
				auto p_left = move_left(mid_col, C.bottom, C.top, 0, C.left_x, A, B);
				auto p_right = move_right(mid_col, C.bottom, C.top, 0, C.right_x, A, B);
				comps[i].left_col = p_left.second;
				comps[i].right_col = p_right.second;
				comps[i].sum = (p_left.first + p_right.first + mod - mid_col.calc(A, B)) % mod;
				root = i;
				break;
			}
		}
	}
	dfs(root, -1, A, B);
	long long res = 0;
	for (auto C: comps) {
		res += C.sum;
		res %= mod;
	}
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 300 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 300 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 300 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 300 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 296 KB Output is correct
2 Correct 1 ms 300 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 0 ms 340 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 1 ms 468 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 300 KB Output is correct
2 Correct 7 ms 3232 KB Output is correct
3 Correct 2 ms 1032 KB Output is correct
4 Correct 1 ms 596 KB Output is correct
5 Correct 5 ms 1804 KB Output is correct
6 Correct 9 ms 3300 KB Output is correct
7 Correct 31 ms 9268 KB Output is correct
8 Correct 2 ms 932 KB Output is correct
9 Correct 2 ms 712 KB Output is correct
10 Correct 1 ms 560 KB Output is correct
11 Correct 51 ms 24460 KB Output is correct
12 Correct 31 ms 16756 KB Output is correct
13 Correct 28 ms 14448 KB Output is correct
14 Correct 58 ms 20284 KB Output is correct
15 Correct 1 ms 596 KB Output is correct
16 Correct 1 ms 596 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 1 ms 296 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 300 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 8 ms 3304 KB Output is correct
5 Correct 2 ms 1128 KB Output is correct
6 Correct 1 ms 596 KB Output is correct
7 Correct 6 ms 1784 KB Output is correct
8 Correct 10 ms 3316 KB Output is correct
9 Correct 28 ms 9244 KB Output is correct
10 Correct 2 ms 932 KB Output is correct
11 Correct 2 ms 776 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 52 ms 24536 KB Output is correct
14 Correct 33 ms 16756 KB Output is correct
15 Correct 28 ms 14404 KB Output is correct
16 Correct 51 ms 20224 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 1 ms 596 KB Output is correct
19 Correct 1 ms 300 KB Output is correct
20 Correct 78 ms 25832 KB Output is correct
21 Correct 8 ms 3204 KB Output is correct
22 Correct 4 ms 1788 KB Output is correct
23 Correct 106 ms 33708 KB Output is correct
24 Correct 178 ms 55268 KB Output is correct
25 Correct 181 ms 59152 KB Output is correct
26 Correct 102 ms 35840 KB Output is correct
27 Correct 84 ms 27092 KB Output is correct
28 Correct 53 ms 16340 KB Output is correct
29 Correct 257 ms 122444 KB Output is correct
30 Correct 125 ms 59732 KB Output is correct
31 Correct 126 ms 64944 KB Output is correct
32 Correct 256 ms 94224 KB Output is correct
33 Correct 84 ms 31056 KB Output is correct
34 Correct 29 ms 12476 KB Output is correct
35 Correct 1 ms 300 KB Output is correct
36 Correct 1 ms 300 KB Output is correct
37 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 1 ms 468 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 296 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 8 ms 3232 KB Output is correct
20 Correct 2 ms 1032 KB Output is correct
21 Correct 1 ms 596 KB Output is correct
22 Correct 6 ms 1804 KB Output is correct
23 Correct 12 ms 3332 KB Output is correct
24 Correct 29 ms 9272 KB Output is correct
25 Correct 2 ms 932 KB Output is correct
26 Correct 2 ms 776 KB Output is correct
27 Correct 1 ms 560 KB Output is correct
28 Correct 50 ms 24460 KB Output is correct
29 Correct 32 ms 16720 KB Output is correct
30 Correct 28 ms 14392 KB Output is correct
31 Correct 52 ms 20268 KB Output is correct
32 Correct 1 ms 596 KB Output is correct
33 Correct 1 ms 676 KB Output is correct
34 Correct 1 ms 212 KB Output is correct
35 Correct 9 ms 3244 KB Output is correct
36 Correct 2 ms 804 KB Output is correct
37 Correct 1 ms 596 KB Output is correct
38 Correct 9 ms 3204 KB Output is correct
39 Correct 11 ms 3532 KB Output is correct
40 Correct 34 ms 12068 KB Output is correct
41 Correct 2 ms 932 KB Output is correct
42 Correct 2 ms 776 KB Output is correct
43 Correct 1 ms 596 KB Output is correct
44 Correct 61 ms 31120 KB Output is correct
45 Correct 36 ms 17120 KB Output is correct
46 Correct 39 ms 16516 KB Output is correct
47 Correct 32 ms 13424 KB Output is correct
48 Correct 2 ms 780 KB Output is correct
49 Correct 1 ms 596 KB Output is correct
50 Correct 0 ms 212 KB Output is correct
51 Correct 0 ms 212 KB Output is correct
52 Correct 1 ms 212 KB Output is correct
53 Correct 1 ms 212 KB Output is correct
54 Correct 1 ms 212 KB Output is correct
55 Correct 1 ms 212 KB Output is correct
56 Correct 1 ms 212 KB Output is correct
57 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 122 ms 46184 KB Output is correct
7 Correct 114 ms 46252 KB Output is correct
8 Correct 132 ms 48788 KB Output is correct
9 Correct 6 ms 1844 KB Output is correct
10 Correct 13 ms 6100 KB Output is correct
11 Correct 14 ms 6000 KB Output is correct
12 Correct 221 ms 89020 KB Output is correct
13 Correct 224 ms 89080 KB Output is correct
14 Correct 203 ms 75380 KB Output is correct
15 Correct 117 ms 56148 KB Output is correct
16 Correct 141 ms 62492 KB Output is correct
17 Correct 135 ms 56724 KB Output is correct
18 Correct 292 ms 106880 KB Output is correct
19 Correct 33 ms 6500 KB Output is correct
20 Correct 171 ms 83096 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
23 Correct 1 ms 212 KB Output is correct
24 Correct 1 ms 212 KB Output is correct
25 Correct 1 ms 212 KB Output is correct
26 Correct 1 ms 212 KB Output is correct
27 Correct 1 ms 212 KB Output is correct
28 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 2 ms 596 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 468 KB Output is correct
20 Correct 0 ms 340 KB Output is correct
21 Correct 0 ms 212 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 8 ms 3176 KB Output is correct
24 Correct 2 ms 1032 KB Output is correct
25 Correct 2 ms 596 KB Output is correct
26 Correct 7 ms 1804 KB Output is correct
27 Correct 12 ms 3208 KB Output is correct
28 Correct 28 ms 9156 KB Output is correct
29 Correct 1 ms 932 KB Output is correct
30 Correct 2 ms 776 KB Output is correct
31 Correct 1 ms 596 KB Output is correct
32 Correct 50 ms 24312 KB Output is correct
33 Correct 34 ms 16576 KB Output is correct
34 Correct 29 ms 14236 KB Output is correct
35 Correct 55 ms 20188 KB Output is correct
36 Correct 1 ms 596 KB Output is correct
37 Correct 1 ms 596 KB Output is correct
38 Correct 1 ms 212 KB Output is correct
39 Correct 88 ms 25472 KB Output is correct
40 Correct 11 ms 3204 KB Output is correct
41 Correct 5 ms 1772 KB Output is correct
42 Correct 115 ms 33420 KB Output is correct
43 Correct 218 ms 55120 KB Output is correct
44 Correct 202 ms 59248 KB Output is correct
45 Correct 113 ms 35964 KB Output is correct
46 Correct 99 ms 27004 KB Output is correct
47 Correct 57 ms 16264 KB Output is correct
48 Correct 261 ms 122472 KB Output is correct
49 Correct 149 ms 59944 KB Output is correct
50 Correct 159 ms 64968 KB Output is correct
51 Correct 282 ms 94456 KB Output is correct
52 Correct 104 ms 31276 KB Output is correct
53 Correct 31 ms 12684 KB Output is correct
54 Correct 1 ms 212 KB Output is correct
55 Correct 9 ms 3204 KB Output is correct
56 Correct 2 ms 932 KB Output is correct
57 Correct 1 ms 688 KB Output is correct
58 Correct 10 ms 3204 KB Output is correct
59 Correct 15 ms 3524 KB Output is correct
60 Correct 46 ms 12068 KB Output is correct
61 Correct 2 ms 932 KB Output is correct
62 Correct 2 ms 776 KB Output is correct
63 Correct 2 ms 596 KB Output is correct
64 Correct 70 ms 31172 KB Output is correct
65 Correct 55 ms 17184 KB Output is correct
66 Correct 40 ms 16600 KB Output is correct
67 Correct 33 ms 13512 KB Output is correct
68 Correct 2 ms 780 KB Output is correct
69 Correct 1 ms 596 KB Output is correct
70 Correct 1 ms 212 KB Output is correct
71 Correct 121 ms 46776 KB Output is correct
72 Correct 113 ms 46776 KB Output is correct
73 Correct 135 ms 49592 KB Output is correct
74 Correct 5 ms 1816 KB Output is correct
75 Correct 13 ms 6156 KB Output is correct
76 Correct 13 ms 6000 KB Output is correct
77 Correct 229 ms 90080 KB Output is correct
78 Correct 233 ms 90168 KB Output is correct
79 Correct 214 ms 76484 KB Output is correct
80 Correct 120 ms 56944 KB Output is correct
81 Correct 133 ms 63240 KB Output is correct
82 Correct 140 ms 57744 KB Output is correct
83 Correct 294 ms 107980 KB Output is correct
84 Correct 33 ms 7256 KB Output is correct
85 Correct 166 ms 83576 KB Output is correct
86 Correct 1 ms 340 KB Output is correct
87 Correct 71 ms 25272 KB Output is correct
88 Correct 10 ms 3408 KB Output is correct
89 Correct 3 ms 1320 KB Output is correct
90 Correct 105 ms 34268 KB Output is correct
91 Correct 179 ms 59016 KB Output is correct
92 Correct 191 ms 63520 KB Output is correct
93 Correct 116 ms 40912 KB Output is correct
94 Correct 84 ms 26560 KB Output is correct
95 Correct 57 ms 17928 KB Output is correct
96 Correct 237 ms 114124 KB Output is correct
97 Correct 134 ms 70108 KB Output is correct
98 Correct 128 ms 66904 KB Output is correct
99 Correct 167 ms 59908 KB Output is correct
100 Correct 99 ms 31776 KB Output is correct
101 Correct 29 ms 12428 KB Output is correct
102 Correct 1 ms 212 KB Output is correct
103 Correct 0 ms 212 KB Output is correct
104 Correct 0 ms 300 KB Output is correct
105 Correct 0 ms 212 KB Output is correct
106 Correct 1 ms 300 KB Output is correct
107 Correct 1 ms 300 KB Output is correct
108 Correct 0 ms 300 KB Output is correct
109 Correct 1 ms 212 KB Output is correct