#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;
// #define LOCAL
/*#ifndef LOCAL
#include "Brunolib.h"
#endif
long long Bruno( int N, int A[] ){
ll cur = 0;
for (int i = N-3; i >= 0; i -= 3) {
int x = 4*A[i]+2*A[i+1]+A[i+2];
switch(x) {
case 0:
break;
case 1:
cur *= 4;
break;
case 2:
cur *= 2;
break;
case 3:
cur = 2*cur+1;
break;
case 4:
cur = 2*cur+1;
break;
case 5:
cur = 4*cur+2;
break;
case 6:
cur = 4*cur+1;
break;
case 7:
cur = 4*cur+3;
break;
}
}
return cur;
}*/
#ifndef LOCAL
#include "Annalib.h"
#else
void Set( int pos, int bit );
#endif
void Anna( int N, long long X, int K, int P[] ){
int bad[150];
F0R(i,N) bad[i] = 0;
F0R(i,K) bad[P[i]] = 1;
int ind = 0;
while (ind < N) {
int sum = bad[ind]+bad[ind+1]+bad[ind+2];
if (sum > 1) {
Set(ind,0); Set(ind+1,0); Set(ind+2,0);
} else if (sum == 1) {
if (bad[ind]) {
Set(ind,0); Set(ind+1,1); Set(ind+2,X%2); X /= 2;
} else if (bad[ind+1]) {
if (X % 2) {
Set(ind,1); Set(ind+1,0); Set(ind+2,0); X /= 2;
} else {
Set(ind+1,0); Set(ind+2,1); Set(ind,(X%4)/2); X /= 4;
}
} else {
if (X % 2) {
Set(ind,1); Set(ind+1,0); Set(ind+2,0);
} else {
Set(ind,0); Set(ind+1,1); Set(ind+2,0);
}
X /= 2;
}
} else {
if (X % 4 == 0) {
Set(ind,0); Set(ind+1,0); Set(ind+2,1);
} else if (X % 4 == 1) {
Set(ind,1); Set(ind+1,1); Set(ind+2,0);
} else if (X % 4 == 2) {
Set(ind,1); Set(ind+1,0); Set(ind+2,1);
} else {
Set(ind,1); Set(ind+1,1); Set(ind+2,1);
}
X /= 4;
}
ind += 3;
}
}
#ifdef LOCAL
#define MAX_K 40
#define MAX_N 150
static int Q, N, K, A[MAX_N], P[MAX_K];
static long long X;
static int min_wa = MAX_K + 1;
void WrongAnswer( int e ){
fprintf( stderr, "Wrong Answer [%d]\n", e );
exit( 0 );
}
void Set( int pos, int bit ){
if( !( 0 <= pos && pos < N ) ){
WrongAnswer( 1 );
}
if( A[pos] != -1 ){
WrongAnswer( 2 );
}
if( !( bit == 0 || bit == 1 ) ){
WrongAnswer( 3 );
}
A[pos] = bit;
}
int main( int argc, char** argv ){
int i, query_cnt;
long long ans;
scanf( "%d", &Q );
for( query_cnt = 0; query_cnt < Q; query_cnt++ ){
scanf( "%d %lld %d", &N, &X, &K );
for( i = 0; i < K; i++ ){
scanf( "%d", &P[i] );
}
for( i = 0; i < N; i++ ){
A[i] = -1;
}
Anna( N, X, K, P );
for( i = 0; i < N; i++ ){
if( A[i] == -1 ){
WrongAnswer( 4 );
}
}
for( i = 0; i < K; i++ ){
A[ P[i] ] = 0;
}
ans = Bruno( N, A );
if( ans != X ){
if( K < min_wa ){
min_wa = K;
}
}
}
if( min_wa == 1 ){
if( K < min_wa ){
min_wa = K;
}
}
fprintf( stdout, "Accepted\n" );
fprintf( stdout, "L* = %d\n", min_wa - 1 );
return 0;
}
#endif
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;
// #define LOCAL
#ifndef LOCAL
#include "Brunolib.h"
#endif
long long Bruno( int N, int A[] ){
ll cur = 0;
for (int i = N-3; i >= 0; i -= 3) {
int x = 4*A[i]+2*A[i+1]+A[i+2];
switch(x) {
case 0:
break;
case 1:
cur *= 4;
break;
case 2:
cur *= 2;
break;
case 3:
cur = 2*cur+1;
break;
case 4:
cur = 2*cur+1;
break;
case 5:
cur = 4*cur+2;
break;
case 6:
cur = 4*cur+1;
break;
case 7:
cur = 4*cur+3;
break;
}
}
return cur;
}
/*#ifndef LOCAL
#include "Annalib.h"
#else
void Set( int pos, int bit );
#endif
void Anna( int N, long long X, int K, int P[] ){
int bad[150];
F0R(i,N) bad[i] = 0;
F0R(i,K) bad[P[i]] = 1;
int ind = 0;
while (ind < N) {
int sum = bad[ind]+bad[ind+1]+bad[ind+2];
if (sum > 1) {
Set(ind,0); Set(ind+1,0); Set(ind+2,0);
} else if (sum == 1) {
if (bad[ind]) {
Set(ind,0); Set(ind+1,1); Set(ind+2,X%2); X /= 2;
} else if (bad[ind+1]) {
if (X % 2) {
Set(ind,1); Set(ind+1,0); Set(ind+2,0); X /= 2;
} else {
Set(ind+1,0); Set(ind+2,1); Set(ind,(X%4)/2); X /= 4;
}
} else {
if (X % 2) {
Set(ind,1); Set(ind+1,0); Set(ind+2,0);
} else {
Set(ind,0); Set(ind+1,1); Set(ind+2,0);
}
X /= 2;
}
} else {
if (X % 4 == 0) {
Set(ind,0); Set(ind+1,0); Set(ind+2,1);
} else if (X % 4 == 1) {
Set(ind,1); Set(ind+1,1); Set(ind+2,0);
} else if (X % 4 == 2) {
Set(ind,1); Set(ind+1,0); Set(ind+2,1);
} else {
Set(ind,1); Set(ind+1,1); Set(ind+2,1);
}
X /= 4;
}
ind += 3;
}
}*/
#ifdef LOCAL
#define MAX_K 40
#define MAX_N 150
static int Q, N, K, A[MAX_N], P[MAX_K];
static long long X;
static int min_wa = MAX_K + 1;
void WrongAnswer( int e ){
fprintf( stderr, "Wrong Answer [%d]\n", e );
exit( 0 );
}
void Set( int pos, int bit ){
if( !( 0 <= pos && pos < N ) ){
WrongAnswer( 1 );
}
if( A[pos] != -1 ){
WrongAnswer( 2 );
}
if( !( bit == 0 || bit == 1 ) ){
WrongAnswer( 3 );
}
A[pos] = bit;
}
int main( int argc, char** argv ){
int i, query_cnt;
long long ans;
scanf( "%d", &Q );
for( query_cnt = 0; query_cnt < Q; query_cnt++ ){
scanf( "%d %lld %d", &N, &X, &K );
for( i = 0; i < K; i++ ){
scanf( "%d", &P[i] );
}
for( i = 0; i < N; i++ ){
A[i] = -1;
}
Anna( N, X, K, P );
for( i = 0; i < N; i++ ){
if( A[i] == -1 ){
WrongAnswer( 4 );
}
}
for( i = 0; i < K; i++ ){
A[ P[i] ] = 0;
}
ans = Bruno( N, A );
if( ans != X ){
if( K < min_wa ){
min_wa = K;
}
}
}
if( min_wa == 1 ){
if( K < min_wa ){
min_wa = K;
}
}
fprintf( stdout, "Accepted\n" );
fprintf( stdout, "L* = %d\n", min_wa - 1 );
return 0;
}
#endif
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
39 ms |
2800 KB |
Output is correct - L* = 40 |
2 |
Correct |
48 ms |
3368 KB |
Output is correct - L* = 40 |
3 |
Correct |
44 ms |
3552 KB |
Output is correct - L* = 40 |
4 |
Correct |
45 ms |
3552 KB |
Output is correct - L* = 40 |
5 |
Correct |
45 ms |
3552 KB |
Output is correct - L* = 40 |
6 |
Correct |
44 ms |
3576 KB |
Output is correct - L* = 40 |
7 |
Correct |
47 ms |
3576 KB |
Output is correct - L* = 40 |
8 |
Correct |
51 ms |
3584 KB |
Output is correct - L* = 40 |
9 |
Correct |
45 ms |
3592 KB |
Output is correct - L* = 40 |
10 |
Correct |
57 ms |
3840 KB |
Output is correct - L* = 40 |
11 |
Correct |
44 ms |
3840 KB |
Output is correct - L* = 40 |
12 |
Correct |
41 ms |
3840 KB |
Output is correct - L* = 40 |
13 |
Correct |
43 ms |
3840 KB |
Output is correct - L* = 40 |
14 |
Correct |
66 ms |
3840 KB |
Output is correct - L* = 40 |
15 |
Correct |
45 ms |
3840 KB |
Output is correct - L* = 40 |
16 |
Correct |
48 ms |
3840 KB |
Output is correct - L* = 40 |
17 |
Correct |
46 ms |
3840 KB |
Output is correct - L* = 40 |
18 |
Correct |
51 ms |
3840 KB |
Output is correct - L* = 40 |
19 |
Correct |
45 ms |
3840 KB |
Output is correct - L* = 40 |
20 |
Correct |
48 ms |
3840 KB |
Output is correct - L* = 40 |
21 |
Correct |
44 ms |
3840 KB |
Output is correct - L* = 40 |
22 |
Correct |
48 ms |
4096 KB |
Output is correct - L* = 40 |
23 |
Correct |
44 ms |
4096 KB |
Output is correct - L* = 40 |
24 |
Correct |
47 ms |
4096 KB |
Output is correct - L* = 40 |
25 |
Correct |
41 ms |
4096 KB |
Output is correct - L* = 40 |
26 |
Correct |
47 ms |
4096 KB |
Output is correct - L* = 40 |
27 |
Correct |
43 ms |
4096 KB |
Output is correct - L* = 40 |
28 |
Correct |
44 ms |
4096 KB |
Output is correct - L* = 40 |
29 |
Correct |
48 ms |
4096 KB |
Output is correct - L* = 40 |
30 |
Correct |
43 ms |
4096 KB |
Output is correct - L* = 40 |
31 |
Correct |
48 ms |
4096 KB |
Output is correct - L* = 40 |
32 |
Correct |
40 ms |
4096 KB |
Output is correct - L* = 40 |
33 |
Correct |
39 ms |
4096 KB |
Output is correct - L* = 40 |
34 |
Correct |
41 ms |
4096 KB |
Output is correct - L* = 40 |
35 |
Correct |
39 ms |
4096 KB |
Output is correct - L* = 40 |
36 |
Correct |
39 ms |
4096 KB |
Output is correct - L* = 40 |
37 |
Correct |
40 ms |
4096 KB |
Output is correct - L* = 40 |
38 |
Correct |
40 ms |
4096 KB |
Output is correct - L* = 40 |
39 |
Correct |
40 ms |
4096 KB |
Output is correct - L* = 40 |
40 |
Correct |
40 ms |
4096 KB |
Output is correct - L* = 40 |