Submission #727425

# Submission time Handle Problem Language Result Execution time Memory
727425 2023-04-20T15:49:33 Z model_code Modern Machine (JOI23_ho_t5) C++17
100 / 100
1263 ms 245456 KB
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
#pragma warning (disable: 4996)

struct Node {
	int BeforeL, BeforeR;
	int AfterL, AfterR;
};

bool operator<(const Node& a1, const Node& a2) {
	if (a1.BeforeL < a2.BeforeL) return true;
	return false;
}

class SegmentTree {
public:
	int mod = 0;
	int size_ = 1;
	int tmp = 0;
	vector<vector<Node>> dat;

	// Initialize SegmentTree
	void Init(int sz, int mod_) {
		mod = mod_;
		while (size_ <= sz) size_ *= 2;
		Node ZERO = Node{ 0, mod - 1, 0, mod - 1 };
		dat.resize(size_ * 2, vector<Node>{});
		for (int i = size_; i < size_ * 2; i++) dat[i].push_back(ZERO);
	}

	// Add Information: A[pos] = x
	void update(int pos, int x) {
		pos += size_;
		dat[pos].clear();
		dat[pos].push_back(Node{ 0, x - 1, (x + 1) % mod, (2 * x) % mod });
		dat[pos].push_back(Node{ x, mod - 1, (2 * x) % mod, (mod - 1 + x) % mod });
	}

	// Merge Vertex pos*2 and pos*2+1
	void Merge(int pos) {
		for (int i = 0; i < dat[pos * 2].size(); i++) {
			int pos1 = lower_bound(dat[pos * 2 + 1].begin(), dat[pos * 2 + 1].end(), Node{ dat[pos * 2][i].AfterL + 1, 0, 0, 0 }) - dat[pos * 2 + 1].begin(); pos1--;
			int pos2 = lower_bound(dat[pos * 2 + 1].begin(), dat[pos * 2 + 1].end(), Node{ dat[pos * 2][i].AfterR + 1, 0, 0, 0 }) - dat[pos * 2 + 1].begin(); pos2--;
			if (dat[pos * 2][i].AfterL > dat[pos * 2][i].AfterR) pos2 += dat[pos * 2 + 1].size();

			// Addition
			for (int j = pos1; j <= pos2; j++) {
				int idx = j % dat[pos * 2 + 1].size();
				int cl = dat[pos * 2][i].AfterL;
				int cr = dat[pos * 2][i].AfterR;
				if (cl > cr) {
					if (j >= dat[pos * 2 + 1].size()) cl = 0;
					else cr = mod - 1;
				}

				// Calculate Actual cl, cr & Offset
				cl = max(cl, dat[pos * 2 + 1][idx].BeforeL);
				cr = min(cr, dat[pos * 2 + 1][idx].BeforeR);
				int offset1 = (dat[pos * 2][i].BeforeL - dat[pos * 2][i].AfterL); if (offset1 < 0) offset1 += mod;
				int offset2 = (dat[pos * 2 + 1][idx].AfterL - dat[pos * 2 + 1][idx].BeforeL); if (offset2 < 0) offset2 += mod;

				// Add to dat[pos]
				dat[pos].push_back(Node{ (offset1 + cl) % mod, (offset1 + cr) % mod, (offset2 + cl) % mod, (offset2 + cr) % mod });
			}
		}
	}

	// Recursion
	void query_(int l, int r, int a, int b, int u) {
		if (l <= a && b <= r) {
			int pos1 = lower_bound(dat[u].begin(), dat[u].end(), Node{ tmp + 1, 0, 0, 0 }) - dat[u].begin(); pos1--;
			int offset = dat[u][pos1].AfterL - dat[u][pos1].BeforeL; if (offset < 0) offset += mod;
			tmp = (tmp + offset) % mod;
			return;
		}
		if (r <= a || b <= l) return;
		query_(l, r, a, ((a + b) >> 1), u * 2);
		query_(l, r, ((a + b) >> 1), b, u * 2 + 1);
	}

	// Answer Query [cl, cr)
	int query(int cl, int cr, int x) {
		tmp = x;
		query_(cl, cr, 0, size_, 1);
		return tmp;
	}
};

// Input
int N; char C[120009];
int M, A[120009];
int Q, L[120009], R[120009];
int LeftPos[120009], NumLeft;
int RigtPos[120009], NumRigt;
int NextQ[22][22][120009], Haba[22], UpLimit;
long long SumLeft[22][120009];
long long SumRigt[22][120009];
long long SumRed[120009];
SegmentTree Z;

// Initializing
void Initialize() {
	for (int i = 1; i <= N; i++) {
		if (C[i] == 'B') { NumLeft += 1; LeftPos[NumLeft] = i; }
		if (C[i] == 'R') { NumRigt += 1; RigtPos[NumRigt] = i; }
	}
	LeftPos[0] = 0; LeftPos[NumLeft + 1] = N + 1;
	RigtPos[0] = 0; RigtPos[NumRigt + 1] = N + 1;
	reverse(RigtPos, RigtPos + NumRigt + 2);

	// Calculate NextQ
	while ((1 << UpLimit) < N / 2) UpLimit += 1;
	for (int i = 1; i <= UpLimit; i++) {
		Haba[i] = (1 << (i - 1));
	}
	for (int i = 0; i <= UpLimit; i++) {
		for (int j = 0; j <= UpLimit; j++) {
			NextQ[i][j][M + 1] = M + 1;
			for (int k = M; k >= 0; k--) {
				NextQ[i][j][k] = NextQ[i][j][k + 1];
				if (Haba[i] < A[k] && A[k] <= N - Haba[j] && (C[N] == 'R' || A[k] != N)) NextQ[i][j][k] = k; // Changed from uso1_e869120.cpp
			}
		}
	}

	// Calculate Cumulative Sum
	for (int i = 0; i <= UpLimit; i++) {
		SumLeft[i][0] = 0;
		SumRigt[i][0] = 0;
		for (int j = 1; j <= M; j++) {
			SumLeft[i][j] = SumLeft[i][j - 1]; if (A[j] <= Haba[i]) SumLeft[i][j] += A[j];
			SumRigt[i][j] = SumRigt[i][j - 1]; if (N - Haba[i] < A[j]) SumRigt[i][j] += (N - A[j]);
		}
	}
	for (int i = 1; i <= N; i++) {
		SumRed[i] = SumRed[i - 1];
		if (C[i] == 'R') SumRed[i] += 1;
	}
}

// Get number of 'R's when putting ball at place pos
int GetNumR(int cl, int cr, int pos) {
	int val = LeftPos[cl] + (SumRed[RigtPos[cr] - 1] - SumRed[LeftPos[cl]]);
	if (pos != -1) {
		val += pos;
		if (RigtPos[cr] <= pos || (LeftPos[cl] < pos && C[pos] == 'B')) val += 1;
		val %= (N + 1);
	}
	return val;
}

// Answer query [bl, br]
int solve(int bl, int br) {
	int IndexL = 0, LeftLevel = 0;
	int IndexR = 0, RigtLevel = 0;
	int CurrentButton = bl;

	// Repeat Binary Search
	while (true) {
		int Target = min(br + 1, NextQ[LeftLevel][RigtLevel][CurrentButton]);

		// Binary Search
		if (CurrentButton < Target) {
			int cl = CurrentButton, cm, cr = Target;
			int maxn = CurrentButton - 1;
			int maxL = IndexL;
			int maxR = IndexR;
			for (int i = 0; i < 22; i++) {
				cm = (cl + cr) / 2;
				int pos1 = min((long long)NumLeft + 1, IndexL + SumLeft[LeftLevel][cm] - SumLeft[LeftLevel][CurrentButton - 1]);
				int pos2 = min((long long)NumRigt + 1, IndexR + SumRigt[RigtLevel][cm] - SumRigt[RigtLevel][CurrentButton - 1]);
				if (LeftPos[pos1] + 1 < RigtPos[pos2]) {
					if (maxn < cm) { maxn = cm; maxL = pos1; maxR = pos2; }
					cl = cm;
				}
				else {
					cr = cm;
				}
			}

			// When it goes to phase #2
			if (maxn != Target - 1) {
				int StartingPosition = GetNumR(maxL, maxR, A[maxn + 1]);
				return Z.query(maxn + 2, br + 1, StartingPosition);
			}
			CurrentButton = Target;
			IndexL = maxL;
			IndexR = maxR;
		}
		
		// If all query finished
		int CurrentR = GetNumR(IndexL, IndexR, -1);
		if (CurrentButton == br + 1) return CurrentR;

		// Performing "O(1) operation"
		int NewIndexL = IndexL;
		int NewIndexR = IndexR;
		int Change = 0;
		if (RigtPos[IndexR] <= A[CurrentButton] || (LeftPos[IndexL] < A[CurrentButton] && C[A[CurrentButton]] == 'B')) Change = 1;
		if (N - CurrentR >= A[CurrentButton]) NewIndexL += A[CurrentButton] + Change;
		else NewIndexR += (N + 1 - A[CurrentButton]) - Change;

		// When it goes to phase #2
		if (LeftPos[min(NumLeft + 1, NewIndexL)] + 1 >= RigtPos[min(NumRigt + 1, NewIndexR)]) {
			return Z.query(CurrentButton + 1, br + 1, (CurrentR + Change + A[CurrentButton]) % (N + 1));
		}
		IndexR = NewIndexR;
		IndexL = NewIndexL;
		CurrentButton += 1;

		// Update Level
		while (LeftLevel < UpLimit && Haba[LeftLevel + 1] <= LeftPos[IndexL]) LeftLevel += 1;
		while (RigtLevel < UpLimit && Haba[RigtLevel + 1] <= N + 1 - RigtPos[IndexR]) RigtLevel += 1;
	}
}

int main() {
	// Input
	scanf("%d%d", &N, &M);
	for (int i = 1; i <= N; i++) cin >> C[i];
	for (int i = 1; i <= M; i++) scanf("%d", &A[i]);
	scanf("%d", &Q);
	for (int i = 1; i <= Q; i++) scanf("%d%d", &L[i], &R[i]);

	// Precount
	Z.Init(M + 2, N + 1);
	for (int i = 1; i <= M; i++) Z.update(i, A[i]);
	for (int i = Z.size_ - 1; i >= 1; i--) Z.Merge(i);
	Initialize();

	// Answer Query
	for (int i = 1; i <= Q; i++) {
		printf("%d\n", solve(L[i], R[i]));
	}
	return 0;
}

Compilation message

Main.cpp:5: warning: ignoring '#pragma warning ' [-Wunknown-pragmas]
    5 | #pragma warning (disable: 4996)
      | 
Main.cpp: In member function 'void SegmentTree::Merge(int)':
Main.cpp:43:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<Node>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   43 |   for (int i = 0; i < dat[pos * 2].size(); i++) {
      |                   ~~^~~~~~~~~~~~~~~~~~~~~
Main.cpp:54:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<Node>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   54 |      if (j >= dat[pos * 2 + 1].size()) cl = 0;
      |          ~~^~~~~~~~~~~~~~~~~~~~~~~~~~
Main.cpp: In function 'int main()':
Main.cpp:221:7: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  221 |  scanf("%d%d", &N, &M);
      |  ~~~~~^~~~~~~~~~~~~~~~
Main.cpp:223:36: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  223 |  for (int i = 1; i <= M; i++) scanf("%d", &A[i]);
      |                               ~~~~~^~~~~~~~~~~~~
Main.cpp:224:7: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  224 |  scanf("%d", &Q);
      |  ~~~~~^~~~~~~~~~
Main.cpp:225:36: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  225 |  for (int i = 1; i <= Q; i++) scanf("%d%d", &L[i], &R[i]);
      |                               ~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 468 KB Output is correct
6 Correct 1 ms 480 KB Output is correct
7 Correct 2 ms 1120 KB Output is correct
8 Correct 2 ms 992 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 468 KB Output is correct
6 Correct 1 ms 480 KB Output is correct
7 Correct 2 ms 1120 KB Output is correct
8 Correct 2 ms 992 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 21 ms 10064 KB Output is correct
11 Correct 20 ms 10768 KB Output is correct
12 Correct 20 ms 11140 KB Output is correct
13 Correct 15 ms 8880 KB Output is correct
14 Correct 18 ms 11092 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 468 KB Output is correct
6 Correct 1 ms 480 KB Output is correct
7 Correct 2 ms 1120 KB Output is correct
8 Correct 2 ms 992 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 21 ms 10064 KB Output is correct
11 Correct 20 ms 10768 KB Output is correct
12 Correct 20 ms 11140 KB Output is correct
13 Correct 15 ms 8880 KB Output is correct
14 Correct 18 ms 11092 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 435 ms 210808 KB Output is correct
19 Correct 491 ms 223688 KB Output is correct
20 Correct 469 ms 243044 KB Output is correct
21 Correct 412 ms 243448 KB Output is correct
22 Correct 484 ms 236312 KB Output is correct
23 Correct 316 ms 226948 KB Output is correct
24 Correct 351 ms 238600 KB Output is correct
25 Correct 346 ms 238584 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 468 KB Output is correct
2 Correct 295 ms 45764 KB Output is correct
3 Correct 343 ms 45724 KB Output is correct
4 Correct 240 ms 35120 KB Output is correct
5 Correct 192 ms 45776 KB Output is correct
6 Correct 196 ms 45708 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 468 KB Output is correct
2 Correct 295 ms 45764 KB Output is correct
3 Correct 343 ms 45724 KB Output is correct
4 Correct 240 ms 35120 KB Output is correct
5 Correct 192 ms 45776 KB Output is correct
6 Correct 196 ms 45708 KB Output is correct
7 Correct 1 ms 468 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 980 KB Output is correct
10 Correct 14 ms 8876 KB Output is correct
11 Correct 1110 ms 245168 KB Output is correct
12 Correct 1147 ms 245156 KB Output is correct
13 Correct 533 ms 245032 KB Output is correct
14 Correct 737 ms 245128 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 468 KB Output is correct
2 Correct 295 ms 45764 KB Output is correct
3 Correct 343 ms 45724 KB Output is correct
4 Correct 240 ms 35120 KB Output is correct
5 Correct 192 ms 45776 KB Output is correct
6 Correct 196 ms 45708 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 19 ms 10020 KB Output is correct
18 Correct 413 ms 210888 KB Output is correct
19 Correct 825 ms 212244 KB Output is correct
20 Correct 1060 ms 214536 KB Output is correct
21 Correct 1098 ms 219240 KB Output is correct
22 Correct 1189 ms 224188 KB Output is correct
23 Correct 1140 ms 224512 KB Output is correct
24 Correct 518 ms 206676 KB Output is correct
25 Correct 465 ms 206788 KB Output is correct
26 Correct 307 ms 190412 KB Output is correct
27 Correct 318 ms 190392 KB Output is correct
28 Correct 629 ms 237864 KB Output is correct
29 Correct 664 ms 237304 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 468 KB Output is correct
6 Correct 1 ms 480 KB Output is correct
7 Correct 2 ms 1120 KB Output is correct
8 Correct 2 ms 992 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 21 ms 10064 KB Output is correct
11 Correct 20 ms 10768 KB Output is correct
12 Correct 20 ms 11140 KB Output is correct
13 Correct 15 ms 8880 KB Output is correct
14 Correct 18 ms 11092 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 435 ms 210808 KB Output is correct
19 Correct 491 ms 223688 KB Output is correct
20 Correct 469 ms 243044 KB Output is correct
21 Correct 412 ms 243448 KB Output is correct
22 Correct 484 ms 236312 KB Output is correct
23 Correct 316 ms 226948 KB Output is correct
24 Correct 351 ms 238600 KB Output is correct
25 Correct 346 ms 238584 KB Output is correct
26 Correct 1 ms 468 KB Output is correct
27 Correct 295 ms 45764 KB Output is correct
28 Correct 343 ms 45724 KB Output is correct
29 Correct 240 ms 35120 KB Output is correct
30 Correct 192 ms 45776 KB Output is correct
31 Correct 196 ms 45708 KB Output is correct
32 Correct 1 ms 468 KB Output is correct
33 Correct 1 ms 340 KB Output is correct
34 Correct 1 ms 980 KB Output is correct
35 Correct 14 ms 8876 KB Output is correct
36 Correct 1110 ms 245168 KB Output is correct
37 Correct 1147 ms 245156 KB Output is correct
38 Correct 533 ms 245032 KB Output is correct
39 Correct 737 ms 245128 KB Output is correct
40 Correct 1 ms 340 KB Output is correct
41 Correct 1 ms 340 KB Output is correct
42 Correct 1 ms 468 KB Output is correct
43 Correct 1 ms 468 KB Output is correct
44 Correct 1 ms 468 KB Output is correct
45 Correct 1 ms 340 KB Output is correct
46 Correct 1 ms 340 KB Output is correct
47 Correct 1 ms 468 KB Output is correct
48 Correct 1 ms 468 KB Output is correct
49 Correct 1 ms 340 KB Output is correct
50 Correct 19 ms 10020 KB Output is correct
51 Correct 413 ms 210888 KB Output is correct
52 Correct 825 ms 212244 KB Output is correct
53 Correct 1060 ms 214536 KB Output is correct
54 Correct 1098 ms 219240 KB Output is correct
55 Correct 1189 ms 224188 KB Output is correct
56 Correct 1140 ms 224512 KB Output is correct
57 Correct 518 ms 206676 KB Output is correct
58 Correct 465 ms 206788 KB Output is correct
59 Correct 307 ms 190412 KB Output is correct
60 Correct 318 ms 190392 KB Output is correct
61 Correct 629 ms 237864 KB Output is correct
62 Correct 664 ms 237304 KB Output is correct
63 Correct 870 ms 228680 KB Output is correct
64 Correct 1179 ms 244976 KB Output is correct
65 Correct 1014 ms 245456 KB Output is correct
66 Correct 1263 ms 237844 KB Output is correct
67 Correct 426 ms 190048 KB Output is correct
68 Correct 405 ms 190056 KB Output is correct
69 Correct 357 ms 171820 KB Output is correct
70 Correct 376 ms 171908 KB Output is correct
71 Correct 578 ms 210656 KB Output is correct
72 Correct 671 ms 228724 KB Output is correct
73 Correct 653 ms 228652 KB Output is correct
74 Correct 1002 ms 243560 KB Output is correct
75 Correct 625 ms 240376 KB Output is correct
76 Correct 573 ms 241808 KB Output is correct