Submission #727417

# Submission time Handle Problem Language Result Execution time Memory
727417 2023-04-20T15:49:17 Z model_code Chorus (JOI23_chorus) C++17
100 / 100
3505 ms 140680 KB
#ifndef LOCAL
#pragma GCC optimize ("Ofast")
#pragma GCC optimize ("unroll-loops")
#endif

#include <bits/stdc++.h>
using namespace std;

using ll=long long;
#define int ll

#define rng(i,a,b) for(int i=int(a);i<int(b);i++)
#define rep(i,b) rng(i,0,b)
#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)
#define per(i,b) gnr(i,0,b)
#define pb push_back
#define eb emplace_back
#define a first
#define b second
#define bg begin()
#define ed end()
#define all(x) x.bg,x.ed
#define si(x) int(x.size())
#ifdef LOCAL
#define dmp(x) cerr<<__LINE__<<" "<<#x<<" "<<x<<endl
#else
#define dmp(x) void(0)
#endif

template<class t,class u> bool chmax(t&a,u b){if(a<b){a=b;return true;}else return false;}
template<class t,class u> bool chmin(t&a,u b){if(b<a){a=b;return true;}else return false;}

template<class t> using vc=vector<t>;
template<class t> using vvc=vc<vc<t>>;

using pi=pair<int,int>;
using vi=vc<int>;

template<class t,class u>
ostream& operator<<(ostream& os,const pair<t,u>& p){
	return os<<"{"<<p.a<<","<<p.b<<"}";
}

template<class t> ostream& operator<<(ostream& os,const vc<t>& v){
	os<<"{";
	for(auto e:v)os<<e<<",";
	return os<<"}";
}

#define mp make_pair
#define mt make_tuple
#define one(x) memset(x,-1,sizeof(x))
#define zero(x) memset(x,0,sizeof(x))
#ifdef LOCAL
void dmpr(ostream&os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
	os<<t<<" ";
	dmpr(os,args...);
}
#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)
#else
#define dmp2(...) void(0)
#endif

using uint=unsigned;
using ull=unsigned long long;

template<class t,size_t n>
ostream& operator<<(ostream&os,const array<t,n>&a){
	return os<<vc<t>(all(a));
}

template<int i,class T>
void print_tuple(ostream&,const T&){
}

template<int i,class T,class H,class ...Args>
void print_tuple(ostream&os,const T&t){
	if(i)os<<",";
	os<<get<i>(t);
	print_tuple<i+1,T,Args...>(os,t);
}

template<class ...Args>
ostream& operator<<(ostream&os,const tuple<Args...>&t){
	os<<"{";
	print_tuple<0,tuple<Args...>,Args...>(os,t);
	return os<<"}";
}

template<class t>
void print(t x,int suc=1){
	cout<<x;
	if(suc==1)
		cout<<"\n";
	if(suc==2)
		cout<<" ";
}

ll read(){
	ll i;
	cin>>i;
	return i;
}

vi readvi(int n,int off=0){
	vi v(n);
	rep(i,n)v[i]=read()+off;
	return v;
}

pi readpi(int off=0){
	int a,b;cin>>a>>b;
	return pi(a+off,b+off);
}

template<class t,class u>
void print(const pair<t,u>&p,int suc=1){
	print(p.a,2);
	print(p.b,suc);
}

template<class t,class u>
void print_offset(const pair<t,u>&p,ll off,int suc=1){
	print(p.a+off,2);
	print(p.b+off,suc);
}

template<class T>
void print(const vector<T>&v,int suc=1){
	rep(i,v.size())
		print(v[i],i==int(v.size())-1?suc:2);
}

template<class T>
void print_offset(const vector<T>&v,ll off,int suc=1){
	rep(i,v.size())
		print(v[i]+off,i==int(v.size())-1?suc:2);
}

template<class T,size_t N>
void print(const array<T,N>&v,int suc=1){
	rep(i,N)
		print(v[i],i==int(N)-1?suc:2);
}

string readString(){
	string s;
	cin>>s;
	return s;
}

template<class T>
T sq(const T& t){
	return t*t;
}

void YES(bool ex=true){
	cout<<"YES\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void NO(bool ex=true){
	cout<<"NO\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void Yes(bool ex=true){
	cout<<"Yes\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void No(bool ex=true){
	cout<<"No\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
//#define CAPITAL
/*
void yes(bool ex=true){
	#ifdef CAPITAL
	cout<<"YES"<<"\n";
	#else
	cout<<"Yes"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void no(bool ex=true){
	#ifdef CAPITAL
	cout<<"NO"<<"\n";
	#else
	cout<<"No"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}*/
void possible(bool ex=true){
	#ifdef CAPITAL
	cout<<"POSSIBLE"<<"\n";
	#else
	cout<<"Possible"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void impossible(bool ex=true){
	#ifdef CAPITAL
	cout<<"IMPOSSIBLE"<<"\n";
	#else
	cout<<"Impossible"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}

constexpr ll ten(int n){
	return n==0?1:ten(n-1)*10;
}

const ll infLL=LLONG_MAX/3;

#ifdef int
const int inf=infLL;
#else
const int inf=INT_MAX/2-100;
#endif

int topbit(signed t){
	return t==0?-1:31-__builtin_clz(t);
}
int topbit(ll t){
	return t==0?-1:63-__builtin_clzll(t);
}
int topbit(ull t){
	return t==0?-1:63-__builtin_clzll(t);
}
int botbit(signed a){
	return a==0?32:__builtin_ctz(a);
}
int botbit(ll a){
	return a==0?64:__builtin_ctzll(a);
}
int botbit(ull a){
	return a==0?64:__builtin_ctzll(a);
}
int popcount(signed t){
	return __builtin_popcount(t);
}
int popcount(ll t){
	return __builtin_popcountll(t);
}
int popcount(ull t){
	return __builtin_popcountll(t);
}
bool ispow2(int i){
	return i&&(i&-i)==i;
}
ll mask(int i){
	return (ll(1)<<i)-1;
}
ull umask(int i){
	return (ull(1)<<i)-1;
}
ll minp2(ll n){
	if(n<=1)return 1;
	else return ll(1)<<(topbit(n-1)+1);
}

bool inc(int a,int b,int c){
	return a<=b&&b<=c;
}

template<class t> void mkuni(vc<t>&v){
	sort(all(v));
	v.erase(unique(all(v)),v.ed);
}

ll rand_int(ll l, ll r) { //[l, r]
	//#ifdef LOCAL
	static mt19937_64 gen;
	/*#else
	static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
	#endif*/
	return uniform_int_distribution<ll>(l, r)(gen);
}

ll rand_int(ll k){ //[0,k)
	return rand_int(0,k-1);
}

template<class t>
void myshuffle(vc<t>&a){
	rep(i,si(a))swap(a[i],a[rand_int(0,i)]);
}

template<class t>
int lwb(const vc<t>&v,const t&a){
	return lower_bound(all(v),a)-v.bg;
}
template<class t>
bool bis(const vc<t>&v,const t&a){
	return binary_search(all(v),a);
}

vvc<int> readGraph(int n,int m){
	vvc<int> g(n);
	rep(i,m){
		int a,b;
		cin>>a>>b;
		//sc.read(a,b);
		a--;b--;
		g[a].pb(b);
		g[b].pb(a);
	}
	return g;
}

vvc<int> readTree(int n){
	return readGraph(n,n-1);
}

vc<ll> presum(const vi&a){
	vc<ll> s(si(a)+1);
	rep(i,si(a))s[i+1]=s[i]+a[i];
	return s;
}
//BIT で数列を管理するときに使う (CF850C)
template<class t>
vc<t> predif(vc<t> a){
	gnr(i,1,si(a))a[i]-=a[i-1];
	return a;
}

template<class t>
void transvvc(int&n,int&m,vvc<t>&a){
	assert(si(a)==n);
	vvc<int> b(m,vi(n));
	rep(i,n){
		assert(si(a[i])==m);
		rep(j,m)b[j][i]=a[i][j];
	}
	a.swap(b);
	swap(n,m);
}

//ソートして i 番目が idx[i]
//CF850C
template<class t>
vi sortidx(const vc<t>&a){
	int n=si(a);
	vi idx(n);iota(all(idx),0);
	sort(all(idx),[&](int i,int j){return a[i]<a[j];});
	return idx;
}
//vs[i]=a[idx[i]]
//例えば sortidx で得た idx を使えば単にソート列になって返ってくる
//CF850C
template<class t>
vc<t> a_idx(const vc<t>&a,const vi&idx){
	int n=si(a);
	assert(si(idx)==n);
	vc<t> vs(n);
	rep(i,n)vs[i]=a[idx[i]];
	return vs;
}
//CF850C
vi invperm(const vi&p){
	int n=si(p);
	vi q(n);
	rep(i,n)q[p[i]]=i;
	return q;
}

template<class t,class s=t>
s SUM(const vc<t>&a){
	return accumulate(all(a),s(0));
}

//ä½¿ã£ãŸã‚¹ãƒ†ãƒƒãƒ—æ•°ã®æƒ…å ±ã‚’æŒã¤ convex hull
//F(a,b)=true なら a を優先
//min-hull なら less をいれればいい
//eval の値が 10^18 オーダーならだいたいうまく行くようになっているはず
//stress-tested (CC 2023-2 Cookoff G)
struct linelr{
	int a,b,c,d;
	int eval(int x){
		return a*x+b;
	}
};
ostream&operator<<(ostream&os,const linelr&ln){
	return os<<"L{"<<ln.a<<","<<ln.b<<","<<ln.c<<","<<ln.d<<"}";
}
template<class F>
struct vlr{
	int v=F()(inf,-inf)?-inf:inf,l=-inf,r=inf;
	static vlr merge(const vlr&a,const vlr&b){
		if(F()(a.v,b.v))return a;
		else if(F()(b.v,a.v))return b;
		else return {a.v,min(a.l,b.l),max(a.r,b.r)};
	}
	bool operator==(const vlr&rhs)const{
		return v==rhs.v&&l==rhs.l&&r==rhs.r;
	}
	bool operator!=(const vlr&rhs)const{
		return v!=rhs.v||l!=rhs.l||r!=rhs.r;
	}
	vlr operator+(int a)const{
		return {v+a,l,r};
	}
	void adv(int a){
		v+=a;
		l++;
		r++;
	}
};
template<class F>
ostream&operator<<(ostream&os,const vlr<F>&z){
	return os<<"vlr{"<<z.v<<",["<<z.l<<","<<z.r<<"]}";
}
template<class F>
struct chtlr{
	static int fdiv(int a,int b){
		return a / b - ((a ^ b) < 0 && a % b);
	}
	static int cdiv(int a,int b){
		return a / b + ((a ^ b) > 0 && a % b);
	}
	//can b be the opt?
	static bool cmpline(const linelr&a,const linelr&b,const linelr&c){
		int ay=a.b-b.b,ax=b.a-a.a;
		int by=b.b-c.b,bx=c.a-b.a;
		return cdiv(ay,ax)<=fdiv(by,bx);
	}
	vector<linelr> ls;
	int head,prex;
	vlr<F> preres;
	chtlr(){clear();}
	void clear(){
		ls.clear();
		head=0;
		prex=-inf;
		preres=vlr<F>();
	}
	//min-hull -> z.a is non-increasing
	void add(linelr z){
		if(si(ls))assert(!F()(ls.back().a,z.a));
		if(prex!=-inf)preres=vlr<F>::merge(preres,{z.eval(prex),z.c,z.d});
		if(si(ls)&&ls.back().a==z.a){
			auto&w=ls.back();
			if(F()(w.b,z.b)){
				return;
			}else if(F()(z.b,w.b)){
				ls.pop_back();
			}else{
				chmin(w.c,z.c);
				chmax(w.d,z.d);
				return;
			}
		}
		while(si(ls)>=2){
			int s=si(ls);
			if(cmpline(ls[s-2],ls[s-1],z))
				break;
			ls.pop_back();
		}
		chmin(head,si(ls));
		ls.push_back(z);
	}
	void add(int a,int b,int c,int d){add(linelr{a,b,c,d});}
	//x is non-decreasing
	vlr<F> query(int x){
		if(ls.empty())return vlr<F>();
		assert(prex<=x);
		if(prex==x)return preres;
		while(head+1<si(ls)){
			if(F()(ls[head+1].eval(x),ls[head].eval(x))) head++;
			else break;
		}
		int res=ls[head].eval(x),c=ls[head].c,d=ls[head].d;
		while(head+1<si(ls)&&!F()(res,ls[head+1].eval(x))){
			head++;
			chmin(c,ls[head].c);
			chmax(d,ls[head].d);
		}
		prex=x;
		return preres={res,c,d};
	}
};

//monge コストでちょうど k step でやれ,みたいな最小化問題 
//max(f(x))-max(f(x)) の上界を dif で与えている
template<class F>
int kstepmin(int k,int dif,F f){
	assert(dif>=0);
	int lw=-1;
	int up=dif+1;
	while(up-lw>1){
		int mid=(lw+up)/2;
		auto z=f(mid);
		if(z.r<k){
			up=mid;
		}else if(k<z.l){
			lw=mid;
		}else return z.v-mid*k;
	}
	dmp2(lw,up);
	assert(false);
}

//stress-tested
template<class N>
struct slide_monoid{
	vc<N> a,b;
	int head,mid;
	slide_monoid(){clear();}
	void clear(){
		a.clear();
		b.clear();b.eb();
		head=0;
		mid=0;
	}
	void push(const N&x){
		a.pb(x);
		b.pb(N::merge(b.back(),x));
	}
	void pop(){
		if(++head>mid){
			b.back()=N();
			mid=si(b)-1;
			gnr(i,head,mid)
				b[i]=N::merge(a[i],b[i+1]);
		}
		assert(head<=mid);
	}
	N get(){
		return N::merge(b[head],b.back());
	}
};

int slv(int n,int k,string s){
	int off=0;
	vi a;
	{
		int x=0,y=0;
		rep(i,2*n){
			if(s[i]=='A'){
				int v=min(x,y);
				off+=y-v;
				a.pb(v);
				x++;
			}else{
				y++;
			}
		}
	}
	vi b=presum(a);
	using V=vlr<less<int>>;
	chtlr<less<int>> cht;
	slide_monoid<V> sm;
	vc<V> dp(n+1);
	auto f=[&](int cost)->V{
		cht.clear();
		sm.clear();
		int j=0;
		rep(i,n+1){
			if(i==0){
				dp[i]={0,0,0};
			}else{
				dp[i]=V::merge(cht.query(i)+b[i],sm.get());
				dp[i].adv(cost);
			}
			sm.push(dp[i]);
			if(i<n){
				while(j<a[i]){
					sm.pop();
					cht.add(-j,dp[j].v-b[i]+j*i,dp[j].l,dp[j].r);
					j++;
				}
			}
		}
		return dp[n];
	};
	return kstepmin(k,n*n,f)+off;
}

signed main(){
	cin.tie(0);
	ios::sync_with_stdio(0);
	cout<<fixed<<setprecision(20);
	
	int n,k;cin>>n>>k;
	string s;cin>>s;
	print(slv(n,k,s));
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 1 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 1 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 2 ms 340 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 2 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 1 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 2 ms 340 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 2 ms 340 KB Output is correct
29 Correct 6 ms 1048 KB Output is correct
30 Correct 13 ms 1080 KB Output is correct
31 Correct 12 ms 1112 KB Output is correct
32 Correct 2 ms 980 KB Output is correct
33 Correct 2 ms 980 KB Output is correct
34 Correct 5 ms 1112 KB Output is correct
35 Correct 6 ms 1112 KB Output is correct
36 Correct 4 ms 980 KB Output is correct
37 Correct 7 ms 980 KB Output is correct
38 Correct 5 ms 1092 KB Output is correct
39 Correct 9 ms 1048 KB Output is correct
40 Correct 6 ms 1048 KB Output is correct
41 Correct 8 ms 1112 KB Output is correct
42 Correct 7 ms 952 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 1 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 2 ms 340 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 2 ms 340 KB Output is correct
29 Correct 6 ms 1048 KB Output is correct
30 Correct 13 ms 1080 KB Output is correct
31 Correct 12 ms 1112 KB Output is correct
32 Correct 2 ms 980 KB Output is correct
33 Correct 2 ms 980 KB Output is correct
34 Correct 5 ms 1112 KB Output is correct
35 Correct 6 ms 1112 KB Output is correct
36 Correct 4 ms 980 KB Output is correct
37 Correct 7 ms 980 KB Output is correct
38 Correct 5 ms 1092 KB Output is correct
39 Correct 9 ms 1048 KB Output is correct
40 Correct 6 ms 1048 KB Output is correct
41 Correct 8 ms 1112 KB Output is correct
42 Correct 7 ms 952 KB Output is correct
43 Correct 210 ms 8760 KB Output is correct
44 Correct 207 ms 15504 KB Output is correct
45 Correct 206 ms 15468 KB Output is correct
46 Correct 16 ms 11252 KB Output is correct
47 Correct 17 ms 12884 KB Output is correct
48 Correct 180 ms 15480 KB Output is correct
49 Correct 146 ms 15420 KB Output is correct
50 Correct 83 ms 13060 KB Output is correct
51 Correct 245 ms 13148 KB Output is correct
52 Correct 137 ms 15432 KB Output is correct
53 Correct 126 ms 15400 KB Output is correct
54 Correct 246 ms 13248 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 1 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 2 ms 340 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 2 ms 340 KB Output is correct
29 Correct 6 ms 1048 KB Output is correct
30 Correct 13 ms 1080 KB Output is correct
31 Correct 12 ms 1112 KB Output is correct
32 Correct 2 ms 980 KB Output is correct
33 Correct 2 ms 980 KB Output is correct
34 Correct 5 ms 1112 KB Output is correct
35 Correct 6 ms 1112 KB Output is correct
36 Correct 4 ms 980 KB Output is correct
37 Correct 7 ms 980 KB Output is correct
38 Correct 5 ms 1092 KB Output is correct
39 Correct 9 ms 1048 KB Output is correct
40 Correct 6 ms 1048 KB Output is correct
41 Correct 8 ms 1112 KB Output is correct
42 Correct 7 ms 952 KB Output is correct
43 Correct 210 ms 8760 KB Output is correct
44 Correct 207 ms 15504 KB Output is correct
45 Correct 206 ms 15468 KB Output is correct
46 Correct 16 ms 11252 KB Output is correct
47 Correct 17 ms 12884 KB Output is correct
48 Correct 180 ms 15480 KB Output is correct
49 Correct 146 ms 15420 KB Output is correct
50 Correct 83 ms 13060 KB Output is correct
51 Correct 245 ms 13148 KB Output is correct
52 Correct 137 ms 15432 KB Output is correct
53 Correct 126 ms 15400 KB Output is correct
54 Correct 246 ms 13248 KB Output is correct
55 Correct 1567 ms 107616 KB Output is correct
56 Correct 2290 ms 139592 KB Output is correct
57 Correct 2577 ms 139560 KB Output is correct
58 Correct 125 ms 115936 KB Output is correct
59 Correct 143 ms 122380 KB Output is correct
60 Correct 1617 ms 139540 KB Output is correct
61 Correct 1776 ms 140680 KB Output is correct
62 Correct 705 ms 122508 KB Output is correct
63 Correct 1987 ms 123072 KB Output is correct
64 Correct 2008 ms 139604 KB Output is correct
65 Correct 2187 ms 139600 KB Output is correct
66 Correct 3505 ms 139540 KB Output is correct
67 Correct 1928 ms 140036 KB Output is correct