Submission #72717

#TimeUsernameProblemLanguageResultExecution timeMemory
72717BenqRailway Trip (JOI17_railway_trip)C++14
0 / 100
464 ms30224 KiB
#pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #include <ext/rope> using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 100001; template<class T, int SZ> struct RMQ { T stor[SZ][32-__builtin_clz(SZ)]; T comb(T a, T b) { return max(a,b); } void build() { FOR(j,1,32-__builtin_clz(SZ)) F0R(i,SZ-(1<<(j-1))) stor[i][j] = comb(stor[i][j-1], stor[i+(1<<(j-1))][j-1]); } T query(int l, int r) { int x = 31-__builtin_clz(r-l+1); return comb(stor[l][x],stor[r-(1<<x)+1][x]); } }; RMQ<int,MX> R; int N,K,Q,L[MX]; pi bound[MX][17]; vi tmp[MX]; set<int> S; pi nex(pi x, int y) { return {min(bound[x.f][y].f,bound[x.s][y].f), max(bound[x.f][y].s,bound[x.s][y].s)}; } int dist(int x, int y) { if (L[x] != L[y]) return 1; // cout << "ZZ " << x << " " << y << "\n"; return distance(find(all(tmp[L[x]]),x),find(all(tmp[L[x]]),y)); } pair<int,pi> tri(int x, int y) { int num = 0; pi cur = {x,x}; F0Rd(i,17) { pi CUR = nex(cur,i); if (max(L[CUR.f],L[CUR.s]) < y) { cur = CUR; num ^= 1<<i; } } if (max(L[cur.f],L[cur.s]) < y) { cur = nex(cur,0); num ++; } return {num,cur}; } int solve(int A, int B) { int res = R.query(A,B); pair<int,pi> a = tri(A,res), b = tri(B,res); // first time you to at least that level int ans = a.f+b.f+dist(L[a.s.s] >= res ? a.s.s : a.s.f,L[b.s.f] >= res ? b.s.f : b.s.s); if (res != K) { a = tri(A,res+1), b = tri(B,res+1); if (a.s.f == b.s.f || a.s.s == b.s.s) ans = min(ans,a.f+b.f); else ans = min(ans,a.f+b.f+1); } return ans; } void init() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> N >> K >> Q; FOR(i,1,N+1) { cin >> L[i]; R.stor[i][0] = L[i]; tmp[L[i]].pb(i); } R.build(); FORd(i,1,K+1) { sort(all(tmp[i])); for (int j: tmp[i]) S.insert(j); for (int j: tmp[i]) { auto it = S.find(j); bound[j][0].f = (it == S.begin() ? 1 : *prev(it)); bound[j][0].s = (next(it) == S.end() ? N : *next(it)); } } F0R(j,16) FOR(i,1,N+1) bound[i][j+1] = nex(bound[i][j],j); } int main() { init(); F0R(i,Q) { int A,B; cin >> A >> B; if (A > B) swap(A,B); cout << solve(A,B)-1 << "\n"; } } /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds * if you have no idea just guess the appropriate well-known algo instead of doing nothing :/ */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...