#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;
template<class T, int SZ> struct RMQ {
T stor[SZ][32-__builtin_clz(SZ)];
T comb(T a, T b) {
return max(a,b);
}
void build() {
FOR(j,1,32-__builtin_clz(SZ)) F0R(i,SZ-(1<<(j-1)))
stor[i][j] = comb(stor[i][j-1],
stor[i+(1<<(j-1))][j-1]);
}
T query(int l, int r) {
int x = 31-__builtin_clz(r-l+1);
return comb(stor[l][x],stor[r-(1<<x)+1][x]);
}
};
RMQ<int,MX> R;
int N,K,Q,L[MX];
pi bound[MX][17];
vi tmp[MX];
set<int> S;
pi nex(pi x, int y) {
return {min(bound[x.f][y].f,bound[x.s][y].f),
max(bound[x.f][y].s,bound[x.s][y].s)};
}
int dist(int x, int y) {
if (L[x] != L[y]) return 1;
// cout << "ZZ " << x << " " << y << "\n";
return distance(find(all(tmp[L[x]]),x),find(all(tmp[L[x]]),y));
}
pair<int,pi> tri(int x, int y) {
int num = 0; pi cur = {x,x};
F0Rd(i,17) {
pi CUR = nex(cur,i);
if (max(L[CUR.f],L[CUR.s]) < y) {
cur = CUR;
num ^= 1<<i;
}
}
if (max(L[cur.f],L[cur.s]) < y) {
cur = nex(cur,0);
num ++;
}
return {num,cur};
}
int solve(int A, int B) {
int res = R.query(A,B);
pair<int,pi> a = tri(A,res), b = tri(B,res); // first time you to at least that level
int ans = a.f+b.f+dist(L[a.s.s] >= res ? a.s.s : a.s.f,L[b.s.f] >= res ? b.s.f : b.s.s);
if (res != K) {
a = tri(A,res+1), b = tri(B,res+1);
if (a.s.f == b.s.f || a.s.s == b.s.s) ans = min(ans,a.f+b.f);
else ans = min(ans,a.f+b.f+1);
}
return ans;
}
void init() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> N >> K >> Q;
FOR(i,1,N+1) {
cin >> L[i];
R.stor[i][0] = L[i];
tmp[L[i]].pb(i);
}
R.build();
FORd(i,1,K+1) {
sort(all(tmp[i]));
for (int j: tmp[i]) S.insert(j);
for (int j: tmp[i]) {
auto it = S.find(j);
bound[j][0].f = (it == S.begin() ? 1 : *prev(it));
bound[j][0].s = (next(it) == S.end() ? N : *next(it));
}
}
F0R(j,16) FOR(i,1,N+1) bound[i][j+1] = nex(bound[i][j],j);
}
int main() {
init();
F0R(i,Q) {
int A,B; cin >> A >> B;
if (A > B) swap(A,B);
cout << solve(A,B)-1 << "\n";
}
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
19 ms |
9336 KB |
Output is correct |
2 |
Correct |
19 ms |
9476 KB |
Output is correct |
3 |
Incorrect |
19 ms |
9476 KB |
Output isn't correct |
4 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
20 ms |
9636 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
464 ms |
28916 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
257 ms |
30224 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |