Submission #726110

# Submission time Handle Problem Language Result Execution time Memory
726110 2023-04-18T13:29:12 Z Alex_tz307 Dancing Elephants (IOI11_elephants) C++17
100 / 100
7681 ms 8656 KB
#include <bits/stdc++.h>
#include "elephants.h"
 
using namespace std;
 
const int kN = 1e5 + 5e4;
const int bucketSize = 1500;
const int kBuckets = 100;
int n, len, a[kN], bucket[kN], indexInBucket[kN];
int updates, auxSize, auxIndices[kN];
 
class bucket_t {
  private:
    int N = 0, indices[2 * bucketSize];
    int req[2 * bucketSize], maxReach[2 * bucketSize];
 
  public:
    bool isEmpty() {
      return N == 0;
    }
 
    int getSize() {
      return N;
    }
 
    int last() {
      return a[indices[N - 1]];
    }
 
    void add(int index) {
      indices[N++] = index;
    }
 
    void addAll() {
      for (int i = 0; i < N; ++i) {
        auxIndices[auxSize++] = indices[i];
      }
      N = 0;
    }
 
    int cameras(int index) {
      return req[index];
    }
 
    int furthest(int index) {
      return maxReach[index];
    }
 
    void build() {
      int r = N - 1;
 
      for (int l = N - 1; l >= 0; --l) {
        while (a[indices[r]] - a[indices[l]] > len) {
          r -= 1;
        }
 
        if (r == N - 1) {
          req[l] = 1;
          maxReach[l] = a[indices[l]] + len;
        } else {
          req[l] = req[r + 1] + 1;
          maxReach[l] = maxReach[r + 1];
        }
      }
    }
 
    void rem(int pos) {
      for (int i = pos; i < N - 1; ++i) {
        indices[i] = indices[i + 1];
        indexInBucket[indices[i]] = i;
      }
 
      N -= 1;
 
      build();
    }
 
    void ins(int index) {
      int ptr = N - 1;
 
      while (ptr >= 0 && a[index] < a[indices[ptr]]) {
        ptr -= 1;
      }
 
      for (int i = N; i > ptr + 1; --i) {
        indices[i] = indices[i - 1];
        indexInBucket[indices[i]] = i;
      }
 
      indices[ptr + 1] = index;
      indexInBucket[index] = ptr + 1;
 
      N += 1;
 
      build();
    }
 
    int upperBound(int x) {
      int l = -1, r = N;
 
      while (r - l > 1) {
        int mid = (l + r) / 2;
 
        if (mid != -1 && (mid == N || x < a[indices[mid]])) {
          r = mid;
        } else {
          l = mid;
        }
      }
 
      return r;
    }
} buckets[kBuckets];
 
void init(int N, int L, int X[]) {
  n = N;
  len = L;
 
  for (int i = 0; i < n; ++i) {
    a[i] = X[i];
    bucket[i] = i / bucketSize;
    indexInBucket[i] = i % bucketSize;
    buckets[i / bucketSize].add(i);
  }
 
  for (int i = 0; i <= (n - 1) / bucketSize; ++i) {
    buckets[i].build();
  }
}
 
void rebuild() {
  auxSize = 0;
 
  for (int i = 0; i <= (n - 1) / bucketSize; ++i) {
    buckets[i].addAll();
  }
 
  for (int i = 0; i < n; ++i) {
    bucket[auxIndices[i]] = i / bucketSize;
    indexInBucket[auxIndices[i]] = i % bucketSize;
    buckets[i / bucketSize].add(auxIndices[i]);
  }
 
  for (int i = 0; i <= (n - 1) / bucketSize; ++i) {
    buckets[i].build();
  }
}
 
int query() {
  int res = 0;
 
  int reach = -1;
 
  for (int i = 0; i <= (n - 1) / bucketSize; ++i) {
    if (!buckets[i].isEmpty() && reach < buckets[i].last()) {
      int index = buckets[i].upperBound(reach);
      res += buckets[i].cameras(index);
      reach = buckets[i].furthest(index);
    }
  }
 
  return res;
}
 
int update(int index, int x) {
  buckets[bucket[index]].rem(indexInBucket[index]);
 
  a[index] = x;
  bucket[index] = -1;
 
  for (int i = 0; i <= (n - 1) / bucketSize && bucket[index] == -1; ++i) {
    if (!buckets[i].isEmpty() && x <= buckets[i].last()) {
      bucket[index] = i;
    }
  }
 
  if (bucket[index] == -1) {
    bucket[index] = (n - 1) / bucketSize;
  }
 
  buckets[bucket[index]].ins(index);
 
  updates += 1;
 
  if (updates == bucketSize) {
    rebuild();
    updates = 0;
  }
 
  return query();
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 724 KB Output is correct
2 Correct 1 ms 724 KB Output is correct
3 Correct 1 ms 724 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 724 KB Output is correct
2 Correct 1 ms 724 KB Output is correct
3 Correct 1 ms 724 KB Output is correct
4 Correct 1 ms 724 KB Output is correct
5 Correct 1 ms 724 KB Output is correct
6 Correct 1 ms 724 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 724 KB Output is correct
2 Correct 1 ms 724 KB Output is correct
3 Correct 1 ms 724 KB Output is correct
4 Correct 1 ms 724 KB Output is correct
5 Correct 1 ms 724 KB Output is correct
6 Correct 1 ms 724 KB Output is correct
7 Correct 893 ms 1836 KB Output is correct
8 Correct 888 ms 2048 KB Output is correct
9 Correct 843 ms 3152 KB Output is correct
10 Correct 614 ms 3176 KB Output is correct
11 Correct 598 ms 3148 KB Output is correct
12 Correct 1516 ms 3196 KB Output is correct
13 Correct 630 ms 3196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 724 KB Output is correct
2 Correct 1 ms 724 KB Output is correct
3 Correct 1 ms 724 KB Output is correct
4 Correct 1 ms 724 KB Output is correct
5 Correct 1 ms 724 KB Output is correct
6 Correct 1 ms 724 KB Output is correct
7 Correct 893 ms 1836 KB Output is correct
8 Correct 888 ms 2048 KB Output is correct
9 Correct 843 ms 3152 KB Output is correct
10 Correct 614 ms 3176 KB Output is correct
11 Correct 598 ms 3148 KB Output is correct
12 Correct 1516 ms 3196 KB Output is correct
13 Correct 630 ms 3196 KB Output is correct
14 Correct 879 ms 2268 KB Output is correct
15 Correct 1156 ms 2404 KB Output is correct
16 Correct 2960 ms 3396 KB Output is correct
17 Correct 2832 ms 4156 KB Output is correct
18 Correct 3110 ms 4164 KB Output is correct
19 Correct 1610 ms 4124 KB Output is correct
20 Correct 2593 ms 4264 KB Output is correct
21 Correct 2510 ms 4248 KB Output is correct
22 Correct 1054 ms 4124 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 724 KB Output is correct
2 Correct 1 ms 724 KB Output is correct
3 Correct 1 ms 724 KB Output is correct
4 Correct 1 ms 724 KB Output is correct
5 Correct 1 ms 724 KB Output is correct
6 Correct 1 ms 724 KB Output is correct
7 Correct 893 ms 1836 KB Output is correct
8 Correct 888 ms 2048 KB Output is correct
9 Correct 843 ms 3152 KB Output is correct
10 Correct 614 ms 3176 KB Output is correct
11 Correct 598 ms 3148 KB Output is correct
12 Correct 1516 ms 3196 KB Output is correct
13 Correct 630 ms 3196 KB Output is correct
14 Correct 879 ms 2268 KB Output is correct
15 Correct 1156 ms 2404 KB Output is correct
16 Correct 2960 ms 3396 KB Output is correct
17 Correct 2832 ms 4156 KB Output is correct
18 Correct 3110 ms 4164 KB Output is correct
19 Correct 1610 ms 4124 KB Output is correct
20 Correct 2593 ms 4264 KB Output is correct
21 Correct 2510 ms 4248 KB Output is correct
22 Correct 1054 ms 4124 KB Output is correct
23 Correct 4702 ms 7960 KB Output is correct
24 Correct 5428 ms 7888 KB Output is correct
25 Correct 3641 ms 7976 KB Output is correct
26 Correct 3802 ms 7968 KB Output is correct
27 Correct 4560 ms 7884 KB Output is correct
28 Correct 4027 ms 2780 KB Output is correct
29 Correct 4073 ms 2656 KB Output is correct
30 Correct 4480 ms 2784 KB Output is correct
31 Correct 4169 ms 2660 KB Output is correct
32 Correct 3527 ms 7968 KB Output is correct
33 Correct 2676 ms 7964 KB Output is correct
34 Correct 3413 ms 7968 KB Output is correct
35 Correct 2323 ms 8544 KB Output is correct
36 Correct 1808 ms 7968 KB Output is correct
37 Correct 5571 ms 8656 KB Output is correct
38 Correct 3541 ms 7968 KB Output is correct
39 Correct 4091 ms 7972 KB Output is correct
40 Correct 3557 ms 7968 KB Output is correct
41 Correct 7681 ms 8120 KB Output is correct
42 Correct 7629 ms 7976 KB Output is correct