Submission #726099

# Submission time Handle Problem Language Result Execution time Memory
726099 2023-04-18T13:17:24 Z Alex_tz307 Dancing Elephants (IOI11_elephants) C++17
100 / 100
6639 ms 8648 KB
#include <bits/stdc++.h>
#include "elephants.h"

using namespace std;

const int kN = 1e5 + 5e4;
const int bucketSize = 1e3;
const int kBuckets = 150;
int n, len, a[kN], bucket[kN], indexInBucket[kN];
int updates, auxSize, auxIndices[kN];

class bucket_t {
  private:
    int N, indices[2 * bucketSize];
    int req[2 * bucketSize], maxReach[2 * bucketSize];

  public:
    void reset() {
      N = 0;
    }

    bool isEmpty() {
      return N == 0;
    }

    int getSize() {
      return N;
    }

    int last() {
      return a[indices[N - 1]];
    }

    void add(int index) {
      indices[N++] = index;
    }

    void addAll() {
      for (int i = 0; i < N; ++i) {
        auxIndices[auxSize++] = indices[i];
      }
    }

    int jumps(int index) {
      return req[index];
    }

    int furthest(int index) {
      return maxReach[index];
    }

    void build() {
      int r = N - 1;

      for (int l = N - 1; l >= 0; --l) {
        while (a[indices[r]] - a[indices[l]] > len) {
          r -= 1;
        }

        if (r == N - 1) {
          req[l] = 1;
          maxReach[l] = a[indices[l]] + len;
        } else {
          req[l] = req[r + 1] + 1;
          maxReach[l] = maxReach[r + 1];
        }
      }
    }

    void rem(int pos) {
      for (int i = pos; i < N - 1; ++i) {
        indices[i] = indices[i + 1];
        indexInBucket[indices[i]] = i;
      }

      N -= 1;

      build();
    }

    void ins(int index) {
      int ptr = N - 1;

      while (ptr >= 0 && a[index] < a[indices[ptr]]) {
        ptr -= 1;
      }

      for (int i = N; i > ptr + 1; --i) {
        indices[i] = indices[i - 1];
        indexInBucket[indices[i]] = i;
      }

      indices[ptr + 1] = index;
      indexInBucket[index] = ptr + 1;

      N += 1;

      build();
    }

    int upperBound(int x) {
      int l = -1, r = N;

      while (r - l > 1) {
        int mid = (l + r) / 2;

        if (mid != -1 && (mid == N || x < a[indices[mid]])) {
          r = mid;
        } else {
          l = mid;
        }
      }

      return r;
    }
} buckets[kBuckets];

void init(int N, int L, int X[]) {
  n = N;
  len = L;

  for (int i = 0; i <= (n - 1) / bucketSize; ++i) {
    buckets[i].reset();
  }

  for (int i = 0; i < n; ++i) {
    a[i] = X[i];
    bucket[i] = i / bucketSize;
    indexInBucket[i] = i % bucketSize;
    buckets[i / bucketSize].add(i);
  }

  for (int i = 0; i <= (n - 1) / bucketSize; ++i) {
    buckets[i].build();
  }
}

void rebuild() {
  auxSize = 0;

  for (int i = 0; i <= (n - 1) / bucketSize; ++i) {
    buckets[i].addAll();
    buckets[i].reset();
  }

  for (int i = 0; i < n; ++i) {
    bucket[auxIndices[i]] = i / bucketSize;
    indexInBucket[auxIndices[i]] = i % bucketSize;
    buckets[i / bucketSize].add(auxIndices[i]);
  }

  for (int i = 0; i <= (n - 1) / bucketSize; ++i) {
    buckets[i].build();
  }
}

int query() {
  int res = 0;

  int reach = -1;

  for (int i = 0; i <= (n - 1) / bucketSize; ++i) {
    if (!buckets[i].isEmpty() && reach < buckets[i].last()) {
      int index = buckets[i].upperBound(reach);
      res += buckets[i].jumps(index);
      reach = buckets[i].furthest(index);
    }
  }

  return res;
}

int update(int index, int x) {
  buckets[bucket[index]].rem(indexInBucket[index]);

  a[index] = x;
  bucket[index] = -1;

  for (int i = 0; i <= (n - 1) / bucketSize && bucket[index] == -1; ++i) {
    if (!buckets[i].isEmpty() && x <= buckets[i].last()) {
      bucket[index] = i;
    }
  }

  if (bucket[index] == -1) {
    bucket[index] = (n - 1) / bucketSize;
  }

  buckets[bucket[index]].ins(index);

  updates += 1;

  if (updates == bucketSize) {
    rebuild();
    updates = 0;
  }

  return query();
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 584 ms 1476 KB Output is correct
8 Correct 605 ms 1688 KB Output is correct
9 Correct 668 ms 3072 KB Output is correct
10 Correct 596 ms 3076 KB Output is correct
11 Correct 577 ms 3076 KB Output is correct
12 Correct 1156 ms 2952 KB Output is correct
13 Correct 592 ms 3076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 584 ms 1476 KB Output is correct
8 Correct 605 ms 1688 KB Output is correct
9 Correct 668 ms 3072 KB Output is correct
10 Correct 596 ms 3076 KB Output is correct
11 Correct 577 ms 3076 KB Output is correct
12 Correct 1156 ms 2952 KB Output is correct
13 Correct 592 ms 3076 KB Output is correct
14 Correct 572 ms 2040 KB Output is correct
15 Correct 809 ms 2160 KB Output is correct
16 Correct 2020 ms 3396 KB Output is correct
17 Correct 1992 ms 4276 KB Output is correct
18 Correct 2127 ms 4168 KB Output is correct
19 Correct 1236 ms 4172 KB Output is correct
20 Correct 1993 ms 4300 KB Output is correct
21 Correct 1838 ms 4168 KB Output is correct
22 Correct 980 ms 4168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 584 ms 1476 KB Output is correct
8 Correct 605 ms 1688 KB Output is correct
9 Correct 668 ms 3072 KB Output is correct
10 Correct 596 ms 3076 KB Output is correct
11 Correct 577 ms 3076 KB Output is correct
12 Correct 1156 ms 2952 KB Output is correct
13 Correct 592 ms 3076 KB Output is correct
14 Correct 572 ms 2040 KB Output is correct
15 Correct 809 ms 2160 KB Output is correct
16 Correct 2020 ms 3396 KB Output is correct
17 Correct 1992 ms 4276 KB Output is correct
18 Correct 2127 ms 4168 KB Output is correct
19 Correct 1236 ms 4172 KB Output is correct
20 Correct 1993 ms 4300 KB Output is correct
21 Correct 1838 ms 4168 KB Output is correct
22 Correct 980 ms 4168 KB Output is correct
23 Correct 4304 ms 8528 KB Output is correct
24 Correct 4674 ms 8520 KB Output is correct
25 Correct 3505 ms 8524 KB Output is correct
26 Correct 3622 ms 8648 KB Output is correct
27 Correct 4148 ms 8524 KB Output is correct
28 Correct 2580 ms 2380 KB Output is correct
29 Correct 2527 ms 2384 KB Output is correct
30 Correct 2575 ms 2292 KB Output is correct
31 Correct 2499 ms 2288 KB Output is correct
32 Correct 3443 ms 8528 KB Output is correct
33 Correct 2313 ms 8520 KB Output is correct
34 Correct 3422 ms 8524 KB Output is correct
35 Correct 2095 ms 8520 KB Output is correct
36 Correct 1285 ms 8408 KB Output is correct
37 Correct 4920 ms 8524 KB Output is correct
38 Correct 3547 ms 8524 KB Output is correct
39 Correct 3949 ms 8524 KB Output is correct
40 Correct 3689 ms 8572 KB Output is correct
41 Correct 6392 ms 8636 KB Output is correct
42 Correct 6639 ms 8524 KB Output is correct