Submission #723108

# Submission time Handle Problem Language Result Execution time Memory
723108 2023-04-13T08:46:53 Z 0__0 Bi-ing Lottery Treekets (CCO22_day2problem1) C++17
16 / 25
48 ms 32880 KB
#include "bits/stdc++.h"

using namespace std;

void abc() {cout << endl;}
template <typename T, typename ...U> void abc(T a, U ...b) {
    cout << a << ' ', abc(b...);
}
template <typename T> void printv(T l, T r) {
    while (l != r) cout << *l << " \n"[++l == r];
}
template <typename A, typename B> istream& operator >> (istream& o, pair<A, B> &a) {
    return o >> a.first >> a.second;
}
template <typename A, typename B> ostream& operator << (ostream& o, pair<A, B> a) {
    return o << '(' << a.first << ", " << a.second << ')';
}
template <typename T> ostream& operator << (ostream& o, vector<T> a) {
    bool is = false;
    for (T i : a) {o << (is ? ' ' : '{'), is = true, o << i;}
    return o << '}';
}

#ifdef local
#define test(args...) abc("[" + string(#args) + "]", args)
#else
#define test(args...) void(0)
#endif

using ll = long long;

#define int unsigned long long

int loc[10000];
int lpar[10000], rpar[10000];
int dp[10000][10000]; // at node i, need j balls from above
int above[10000]; //exclusive
int below[10000]; //inclusive
int sz[10000];

const int MOD = 1e9 + 7;

int factorial[10000];
int inverse[10000];
int inversef[10000];

int choose(int a, int b) {
    if (a < b) return 0LL;
    return ((factorial[a] % MOD * inversef[b] % MOD) % MOD) * (inversef[a - b]) % MOD;
}

void dfs(int node, int par = -1, bool left = true) {

    below[node] = loc[node];
    sz[node] = 1;

    if (lpar[node]) {
        above[lpar[node]] = above[node] + loc[node];
        dfs(lpar[node], node, true);
        below[node] += below[lpar[node]];
        sz[node] += sz[lpar[node]];
    }
    if (rpar[node]) {
        above[rpar[node]] = above[node] + loc[node];
        dfs(rpar[node], node, false);
        below[node] += below[rpar[node]];
        sz[node] += sz[rpar[node]];
    }

    if (sz[node] < below[node]) {
        cout << 0;
        exit(0);
    }


//    if (lpar[node] ==0  && rpar[node] == 0) {
//        if (loc[node] > 1) {
//            cout << 0 << "\n";
//            exit(0);
//        }
//
//        if (lpar[node] || rpar[node]) {
//            dp[node][0] = 1;
//        } else {
//            dp[node][1] = 1;
//        }
//
//        return;
//    }

    int lc = lpar[node];
    int rc = rpar[node];
    int leftsz = sz[lc] - below[lc];
    int rightsz = sz[rc] - below[rc];
    int lefttaken = below[lc];
    int righttaken = below[rc];
    int space = sz[node] - lefttaken - righttaken;

    if (!left) {
        swap(lc, rc);
        swap(leftsz, rightsz);
        swap(lefttaken, righttaken);
    }

    // the root is somewhere else
    {
        for (int take = 0; take <= leftsz && take <= loc[node]; take++) {
            int takeo = loc[node] - take;

            if (takeo > rightsz) continue;

            for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) {
                int amtleft = min(leftsz, take + i);
                int remain = take + i - amtleft;
                int amtright = min(rightsz, remain + takeo);

                if (amtleft + amtright < loc[node]) continue;

                ll constant = 1;

                if (loc[node] + i == amtleft + amtright + 1) {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant * choose(i, amtleft - take) % MOD * choose(i - (amtleft - take), 1));
                } else {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant % MOD * choose(i, amtleft - take));
                }

                dp[node][i] = (dp[node][i] + ((dp[lc][amtleft] * dp[rc][amtright]) % MOD) * constant) % MOD;
            }
        }
    }

    // take root with itself
    {
        for (int take = 0; take <= leftsz && take < loc[node]; take++) {
            int takeo = loc[node] - take - 1;
            if (takeo > rightsz) continue;

            for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) {

                int amtleft = min(leftsz, take + i);
                int remain = take + i - amtleft;
                int amtright = min(rightsz, remain + takeo);

                if (amtleft + amtright + 1 < loc[node]) continue;

                if (i + loc[node] != space) {
                    continue;
                }

                ll constant;

                if (loc[node] + i == amtleft + amtright + 1) {
                    constant = (choose(loc[node], take) * choose(loc[node] - take, takeo)) % MOD;
                    constant = (constant * choose(i, amtleft - take)) % MOD;
                } else {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant * choose(i, amtleft - take));
                }
                dp[node][i] %= MOD;
                ll temp = dp[lc][amtleft] * dp[rc][amtright];
                temp = temp % MOD;
                temp = (constant % MOD) * temp;
                temp = temp % MOD;
                dp[node][i] = (dp[node][i] + temp) % MOD;
                if (dp[node][i] < 0) {
                    cout <<  dp[node][i] << " " << dp[lc][amtleft] << " " << dp[rc][amtright] << " " << constant;
                    exit(0);
                }
            }
        }
    }
}

int par[10005];

int32_t main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);
//    freopen("input.txt", "r", stdin);
//    freopen("", "w", stdout);
    int n, k; cin >> n >> k;
    factorial[0] = 1;
    for (int i = 1; i <= 9000; i++) {
        factorial[i] = (factorial[i - 1] * i) % MOD;
    }

    inverse[0] = 1;
    inverse[1] = 1;
    for (int i = 2; i <= 9000; i++) {
        inverse[i] = MOD - (MOD / i) * inverse[MOD % i] % MOD;
    }

    inversef[0] = 1;
    for (int i = 1; i <= 9000; i++) {
        inversef[i] = (inversef[i-1] * inverse[i]) % MOD;
    }

    if (k > n) {
        cout << "0\n";
        exit(0);
    }
    for (int i = 1; i <= k; i++) {
        int t; cin >> t;
        loc[t]++;
    }
    for (int i = 1; i <= n; i++) {
        cin >> lpar[i] >> rpar[i];
        par[lpar[i]] = par[rpar[i]] = i;
//        cout << "IAM " << i << endl;
    }

    assert(par[1] == 0);

    dp[0][0] = 1;
    dfs(1);

    cout << dp[1][0] % MOD << "\n";
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 596 KB Output is correct
2 Correct 1 ms 596 KB Output is correct
3 Correct 1 ms 580 KB Output is correct
4 Correct 1 ms 468 KB Output is correct
5 Correct 1 ms 596 KB Output is correct
6 Correct 1 ms 596 KB Output is correct
7 Correct 1 ms 580 KB Output is correct
8 Correct 1 ms 580 KB Output is correct
9 Correct 1 ms 596 KB Output is correct
10 Correct 1 ms 596 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 1 ms 584 KB Output is correct
13 Correct 1 ms 596 KB Output is correct
14 Correct 1 ms 576 KB Output is correct
15 Correct 1 ms 592 KB Output is correct
16 Correct 1 ms 596 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 1 ms 596 KB Output is correct
19 Correct 1 ms 596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 18004 KB Output is correct
2 Correct 48 ms 32880 KB Output is correct
3 Correct 1 ms 468 KB Output is correct
4 Correct 2 ms 1492 KB Output is correct
5 Correct 2 ms 1492 KB Output is correct
6 Correct 14 ms 18004 KB Output is correct
7 Correct 35 ms 26444 KB Output is correct
8 Correct 16 ms 19392 KB Output is correct
9 Correct 29 ms 24456 KB Output is correct
10 Correct 20 ms 20664 KB Output is correct
11 Correct 45 ms 31824 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 30 ms 24624 KB Output is correct
14 Correct 43 ms 29600 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 13 ms 18040 KB Output is correct
17 Correct 29 ms 24020 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 17364 KB Output is correct
2 Correct 12 ms 18092 KB Output is correct
3 Correct 11 ms 17292 KB Output is correct
4 Correct 12 ms 17364 KB Output is correct
5 Correct 13 ms 17348 KB Output is correct
6 Correct 13 ms 17388 KB Output is correct
7 Correct 12 ms 17340 KB Output is correct
8 Correct 12 ms 17492 KB Output is correct
9 Correct 12 ms 17368 KB Output is correct
10 Correct 13 ms 17692 KB Output is correct
11 Correct 12 ms 17492 KB Output is correct
12 Correct 21 ms 19608 KB Output is correct
13 Correct 12 ms 17748 KB Output is correct
14 Correct 13 ms 17364 KB Output is correct
15 Correct 11 ms 17336 KB Output is correct
16 Correct 12 ms 17348 KB Output is correct
17 Correct 13 ms 17328 KB Output is correct
18 Correct 13 ms 17620 KB Output is correct
19 Correct 12 ms 17492 KB Output is correct
20 Correct 6 ms 8912 KB Output is correct
21 Correct 11 ms 16468 KB Output is correct
22 Correct 11 ms 17256 KB Output is correct
23 Correct 11 ms 16848 KB Output is correct
24 Correct 11 ms 17360 KB Output is correct
25 Correct 10 ms 15624 KB Output is correct
26 Correct 12 ms 17236 KB Output is correct
27 Correct 11 ms 16596 KB Output is correct
28 Correct 12 ms 17132 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 596 KB Output is correct
2 Correct 1 ms 596 KB Output is correct
3 Correct 1 ms 580 KB Output is correct
4 Correct 1 ms 468 KB Output is correct
5 Correct 1 ms 596 KB Output is correct
6 Correct 1 ms 596 KB Output is correct
7 Correct 1 ms 580 KB Output is correct
8 Correct 1 ms 580 KB Output is correct
9 Correct 1 ms 596 KB Output is correct
10 Correct 1 ms 596 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 1 ms 584 KB Output is correct
13 Correct 1 ms 596 KB Output is correct
14 Correct 1 ms 576 KB Output is correct
15 Correct 1 ms 592 KB Output is correct
16 Correct 1 ms 596 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 1 ms 596 KB Output is correct
19 Correct 1 ms 596 KB Output is correct
20 Correct 12 ms 18004 KB Output is correct
21 Correct 48 ms 32880 KB Output is correct
22 Correct 1 ms 468 KB Output is correct
23 Correct 2 ms 1492 KB Output is correct
24 Correct 2 ms 1492 KB Output is correct
25 Correct 14 ms 18004 KB Output is correct
26 Correct 35 ms 26444 KB Output is correct
27 Correct 16 ms 19392 KB Output is correct
28 Correct 29 ms 24456 KB Output is correct
29 Correct 20 ms 20664 KB Output is correct
30 Correct 45 ms 31824 KB Output is correct
31 Correct 1 ms 468 KB Output is correct
32 Correct 30 ms 24624 KB Output is correct
33 Correct 43 ms 29600 KB Output is correct
34 Correct 1 ms 468 KB Output is correct
35 Correct 13 ms 18040 KB Output is correct
36 Correct 29 ms 24020 KB Output is correct
37 Correct 12 ms 17364 KB Output is correct
38 Correct 12 ms 18092 KB Output is correct
39 Correct 11 ms 17292 KB Output is correct
40 Correct 12 ms 17364 KB Output is correct
41 Correct 13 ms 17348 KB Output is correct
42 Correct 13 ms 17388 KB Output is correct
43 Correct 12 ms 17340 KB Output is correct
44 Correct 12 ms 17492 KB Output is correct
45 Correct 12 ms 17368 KB Output is correct
46 Correct 13 ms 17692 KB Output is correct
47 Correct 12 ms 17492 KB Output is correct
48 Correct 21 ms 19608 KB Output is correct
49 Correct 12 ms 17748 KB Output is correct
50 Correct 13 ms 17364 KB Output is correct
51 Correct 11 ms 17336 KB Output is correct
52 Correct 12 ms 17348 KB Output is correct
53 Correct 13 ms 17328 KB Output is correct
54 Correct 13 ms 17620 KB Output is correct
55 Correct 12 ms 17492 KB Output is correct
56 Correct 6 ms 8912 KB Output is correct
57 Correct 11 ms 16468 KB Output is correct
58 Correct 11 ms 17256 KB Output is correct
59 Correct 11 ms 16848 KB Output is correct
60 Correct 11 ms 17360 KB Output is correct
61 Correct 10 ms 15624 KB Output is correct
62 Correct 12 ms 17236 KB Output is correct
63 Correct 11 ms 16596 KB Output is correct
64 Correct 12 ms 17132 KB Output is correct
65 Correct 13 ms 15700 KB Output is correct
66 Correct 12 ms 17364 KB Output is correct
67 Correct 11 ms 16052 KB Output is correct
68 Incorrect 13 ms 17492 KB Output isn't correct
69 Halted 0 ms 0 KB -