Submission #723081

# Submission time Handle Problem Language Result Execution time Memory
723081 2023-04-13T08:22:34 Z 0__0 Bi-ing Lottery Treekets (CCO22_day2problem1) C++17
16 / 25
52 ms 32820 KB
#include "bits/stdc++.h"

using namespace std;

void abc() {cout << endl;}
template <typename T, typename ...U> void abc(T a, U ...b) {
    cout << a << ' ', abc(b...);
}
template <typename T> void printv(T l, T r) {
    while (l != r) cout << *l << " \n"[++l == r];
}
template <typename A, typename B> istream& operator >> (istream& o, pair<A, B> &a) {
    return o >> a.first >> a.second;
}
template <typename A, typename B> ostream& operator << (ostream& o, pair<A, B> a) {
    return o << '(' << a.first << ", " << a.second << ')';
}
template <typename T> ostream& operator << (ostream& o, vector<T> a) {
    bool is = false;
    for (T i : a) {o << (is ? ' ' : '{'), is = true, o << i;}
    return o << '}';
}

#ifdef local
#define test(args...) abc("[" + string(#args) + "]", args)
#else
#define test(args...) void(0)
#endif

using ll = long long;

#define int ll

int loc[10000];
int lpar[10000], rpar[10000];
ll dp[10000][10000]; // at node i, need j balls from above
int above[10000]; //exclusive
int below[10000]; //inclusive
int sz[10000];

const ll MOD = 1e9 + 7;

ll factorial[10000];
ll inverse[10000];
ll inversef[10000];

ll choose(int a, int b) {
    if (a < b) return 0LL;
    return ((factorial[a] % MOD * inversef[b] % MOD) % MOD) * (inversef[a - b]) % MOD;
}

void dfs(int node, int par = -1, bool left = true) {

    below[node] = loc[node];
    sz[node] = 1;

    if (lpar[node]) {
        above[lpar[node]] = above[node] + loc[node];
        dfs(lpar[node], node, true);
        below[node] += below[lpar[node]];
        sz[node] += sz[lpar[node]];
    }
    if (rpar[node]) {
        above[rpar[node]] = above[node] + loc[node];
        dfs(rpar[node], node, false);
        below[node] += below[rpar[node]];
        sz[node] += sz[rpar[node]];
    }

    if (sz[node] < below[node]) {
        cout << 0 << '\n';
        exit(0);
    }


//    if (lpar[node] ==0  && rpar[node] == 0) {
//        if (loc[node] > 1) {
//            cout << 0 << "\n";
//            exit(0);
//        }
//
//        if (lpar[node] || rpar[node]) {
//            dp[node][0] = 1;
//        } else {
//            dp[node][1] = 1;
//        }
//
//        return;
//    }

    int lc = lpar[node];
    int rc = rpar[node];
    int leftsz = sz[lc] - below[lc];
    int rightsz = sz[rc] - below[rc];
    int lefttaken = below[lc];
    int righttaken = below[rc];
    int space = sz[node] - lefttaken - righttaken;

    if (!left) {
        swap(lc, rc);
        swap(leftsz, rightsz);
        swap(lefttaken, righttaken);
    }

    // the root is somewhere else
    {
        for (int take = 0; take <= leftsz && take <= loc[node]; take++) {
            int takeo = loc[node] - take;

            if (takeo > rightsz) continue;

            for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) {
                int amtleft = min(leftsz, take + i);
                int remain = take + i - amtleft;
                int amtright = min(rightsz, remain + takeo);

                if (amtleft + amtright < loc[node]) continue;

                ll constant = 1;

                if (loc[node] + i == amtleft + amtright + 1) {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant * choose(i, amtleft - take) % MOD * choose(i - (amtleft - take), 1));
                } else {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant % MOD * choose(i, amtleft - take));
                }

                dp[node][i] = (dp[node][i] + ((dp[lc][amtleft] * dp[rc][amtright]) % MOD) * constant) % MOD;
            }
        }
    }

    // take root with itself
    {
        for (int take = 0; take <= leftsz && take < loc[node]; take++) {
            int takeo = loc[node] - take - 1;
            if (takeo > rightsz) continue;

            for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) {

                int amtleft = min(leftsz, take + i);
                int remain = take + i - amtleft;
                int amtright = min(rightsz, remain + takeo);

                if (amtleft + amtright + 1 < loc[node]) continue;

                if (i + loc[node] != space) {
                    continue;
                }

                ll constant;

                if (loc[node] + i == amtleft + amtright + 1) {
                    constant = (choose(loc[node], take) * choose(loc[node] - take, takeo)) % MOD;
                    constant = (constant * choose(i, amtleft - take)) % MOD;
                } else {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant * choose(i, amtleft - take));
                }

                dp[node][i] = (dp[node][i] + ((dp[lc][amtleft] * dp[rc][amtright]) % MOD) * constant) % MOD;
            }
        }
    }
}

int par[10005];

int32_t main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);
//    freopen("", "r", stdin);
//    freopen("", "w", stdout);
    int n, k; cin >> n >> k;
    factorial[0] = 1;
    for (int i = 1; i <= 9000; i++) {
        factorial[i] = (factorial[i - 1] * i) % MOD;
    }

    inverse[0] = 1;
    inverse[1] = 1;
    for (int i = 2; i <= 9000; i++) {
        inverse[i] = MOD - (MOD / i) * inverse[MOD % i] % MOD;
    }

    inversef[0] = 1;
    for (int i = 1; i <= 9000; i++) {
        inversef[i] = (inversef[i-1] * inverse[i]) % MOD;
    }

    if (k > n) {
        cout << "0\n";
        exit(0);
    }
    for (int i = 1; i <= k; i++) {
        int t; cin >> t;
        loc[t]++;
    }
    for (int i = 1; i <= n; i++) {
        cin >> lpar[i] >> rpar[i];
        par[lpar[i]] = par[rpar[i]] = i;
    }

    assert(par[1] == 0);

    dp[0][0] = 1;
    dfs(1);

    cout << dp[1][0] % MOD << "\n";
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 596 KB Output is correct
2 Correct 1 ms 596 KB Output is correct
3 Correct 1 ms 468 KB Output is correct
4 Correct 1 ms 468 KB Output is correct
5 Correct 1 ms 596 KB Output is correct
6 Correct 1 ms 596 KB Output is correct
7 Correct 1 ms 596 KB Output is correct
8 Correct 1 ms 596 KB Output is correct
9 Correct 1 ms 596 KB Output is correct
10 Correct 1 ms 596 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 1 ms 596 KB Output is correct
14 Correct 1 ms 596 KB Output is correct
15 Correct 1 ms 596 KB Output is correct
16 Correct 1 ms 596 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 1 ms 596 KB Output is correct
19 Correct 1 ms 596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 18000 KB Output is correct
2 Correct 52 ms 32820 KB Output is correct
3 Correct 1 ms 468 KB Output is correct
4 Correct 3 ms 1492 KB Output is correct
5 Correct 2 ms 1492 KB Output is correct
6 Correct 15 ms 18004 KB Output is correct
7 Correct 38 ms 26444 KB Output is correct
8 Correct 18 ms 19460 KB Output is correct
9 Correct 31 ms 24528 KB Output is correct
10 Correct 19 ms 20692 KB Output is correct
11 Correct 49 ms 31752 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 34 ms 24532 KB Output is correct
14 Correct 48 ms 29596 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 15 ms 17980 KB Output is correct
17 Correct 31 ms 24012 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 17292 KB Output is correct
2 Correct 12 ms 18004 KB Output is correct
3 Correct 11 ms 17324 KB Output is correct
4 Correct 11 ms 17364 KB Output is correct
5 Correct 16 ms 17364 KB Output is correct
6 Correct 15 ms 17364 KB Output is correct
7 Correct 12 ms 17424 KB Output is correct
8 Correct 13 ms 17364 KB Output is correct
9 Correct 12 ms 17356 KB Output is correct
10 Correct 13 ms 17684 KB Output is correct
11 Correct 12 ms 17364 KB Output is correct
12 Correct 18 ms 19656 KB Output is correct
13 Correct 12 ms 17620 KB Output is correct
14 Correct 11 ms 17312 KB Output is correct
15 Correct 11 ms 17364 KB Output is correct
16 Correct 11 ms 17364 KB Output is correct
17 Correct 11 ms 17364 KB Output is correct
18 Correct 13 ms 17604 KB Output is correct
19 Correct 11 ms 17376 KB Output is correct
20 Correct 6 ms 8916 KB Output is correct
21 Correct 11 ms 16480 KB Output is correct
22 Correct 13 ms 17200 KB Output is correct
23 Correct 11 ms 16828 KB Output is correct
24 Correct 12 ms 17304 KB Output is correct
25 Correct 12 ms 15564 KB Output is correct
26 Correct 12 ms 17236 KB Output is correct
27 Correct 11 ms 16608 KB Output is correct
28 Correct 11 ms 17096 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 596 KB Output is correct
2 Correct 1 ms 596 KB Output is correct
3 Correct 1 ms 468 KB Output is correct
4 Correct 1 ms 468 KB Output is correct
5 Correct 1 ms 596 KB Output is correct
6 Correct 1 ms 596 KB Output is correct
7 Correct 1 ms 596 KB Output is correct
8 Correct 1 ms 596 KB Output is correct
9 Correct 1 ms 596 KB Output is correct
10 Correct 1 ms 596 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 1 ms 596 KB Output is correct
14 Correct 1 ms 596 KB Output is correct
15 Correct 1 ms 596 KB Output is correct
16 Correct 1 ms 596 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 1 ms 596 KB Output is correct
19 Correct 1 ms 596 KB Output is correct
20 Correct 11 ms 18000 KB Output is correct
21 Correct 52 ms 32820 KB Output is correct
22 Correct 1 ms 468 KB Output is correct
23 Correct 3 ms 1492 KB Output is correct
24 Correct 2 ms 1492 KB Output is correct
25 Correct 15 ms 18004 KB Output is correct
26 Correct 38 ms 26444 KB Output is correct
27 Correct 18 ms 19460 KB Output is correct
28 Correct 31 ms 24528 KB Output is correct
29 Correct 19 ms 20692 KB Output is correct
30 Correct 49 ms 31752 KB Output is correct
31 Correct 1 ms 468 KB Output is correct
32 Correct 34 ms 24532 KB Output is correct
33 Correct 48 ms 29596 KB Output is correct
34 Correct 1 ms 468 KB Output is correct
35 Correct 15 ms 17980 KB Output is correct
36 Correct 31 ms 24012 KB Output is correct
37 Correct 12 ms 17292 KB Output is correct
38 Correct 12 ms 18004 KB Output is correct
39 Correct 11 ms 17324 KB Output is correct
40 Correct 11 ms 17364 KB Output is correct
41 Correct 16 ms 17364 KB Output is correct
42 Correct 15 ms 17364 KB Output is correct
43 Correct 12 ms 17424 KB Output is correct
44 Correct 13 ms 17364 KB Output is correct
45 Correct 12 ms 17356 KB Output is correct
46 Correct 13 ms 17684 KB Output is correct
47 Correct 12 ms 17364 KB Output is correct
48 Correct 18 ms 19656 KB Output is correct
49 Correct 12 ms 17620 KB Output is correct
50 Correct 11 ms 17312 KB Output is correct
51 Correct 11 ms 17364 KB Output is correct
52 Correct 11 ms 17364 KB Output is correct
53 Correct 11 ms 17364 KB Output is correct
54 Correct 13 ms 17604 KB Output is correct
55 Correct 11 ms 17376 KB Output is correct
56 Correct 6 ms 8916 KB Output is correct
57 Correct 11 ms 16480 KB Output is correct
58 Correct 13 ms 17200 KB Output is correct
59 Correct 11 ms 16828 KB Output is correct
60 Correct 12 ms 17304 KB Output is correct
61 Correct 12 ms 15564 KB Output is correct
62 Correct 12 ms 17236 KB Output is correct
63 Correct 11 ms 16608 KB Output is correct
64 Correct 11 ms 17096 KB Output is correct
65 Correct 11 ms 15760 KB Output is correct
66 Correct 13 ms 17364 KB Output is correct
67 Correct 11 ms 16084 KB Output is correct
68 Incorrect 12 ms 17548 KB Output isn't correct
69 Halted 0 ms 0 KB -