Submission #723079

# Submission time Handle Problem Language Result Execution time Memory
723079 2023-04-13T08:21:46 Z 0__0 Bi-ing Lottery Treekets (CCO22_day2problem1) C++17
16 / 25
56 ms 32776 KB
#include "bits/stdc++.h"

using namespace std;

void abc() {cout << endl;}
template <typename T, typename ...U> void abc(T a, U ...b) {
    cout << a << ' ', abc(b...);
}
template <typename T> void printv(T l, T r) {
    while (l != r) cout << *l << " \n"[++l == r];
}
template <typename A, typename B> istream& operator >> (istream& o, pair<A, B> &a) {
    return o >> a.first >> a.second;
}
template <typename A, typename B> ostream& operator << (ostream& o, pair<A, B> a) {
    return o << '(' << a.first << ", " << a.second << ')';
}
template <typename T> ostream& operator << (ostream& o, vector<T> a) {
    bool is = false;
    for (T i : a) {o << (is ? ' ' : '{'), is = true, o << i;}
    return o << '}';
}

#ifdef local
#define test(args...) abc("[" + string(#args) + "]", args)
#else
#define test(args...) void(0)
#endif

using ll = long long;

#define int ll

int loc[10000];
int lpar[10000], rpar[10000];
ll dp[10000][10000]; // at node i, need j balls from above
int above[10000]; //exclusive
int below[10000]; //inclusive
int sz[10000];

const ll MOD = 1e9 + 7;

ll factorial[10000];
ll inverse[10000];
ll inversef[10000];

ll choose(int a, int b) {
    if (a < b) return 0LL;
    return ((factorial[a] % MOD * inversef[b] % MOD) % MOD) * (inversef[a - b]) % MOD;
}

void dfs(int node, int par = -1, bool left = true) {

    below[node] = loc[node];
    sz[node] = 1;

    if (lpar[node]) {
        above[lpar[node]] = above[node] + loc[node];
        dfs(lpar[node], node, true);
        below[node] += below[lpar[node]];
        sz[node] += sz[lpar[node]];
    }
    if (rpar[node]) {
        above[rpar[node]] = above[node] + loc[node];
        dfs(rpar[node], node, false);
        below[node] += below[rpar[node]];
        sz[node] += sz[rpar[node]];
    }

    if (sz[node] < below[node]) {
        cout << 0 << '\n';
        exit(0);
    }


//    if (lpar[node] ==0  && rpar[node] == 0) {
//        if (loc[node] > 1) {
//            cout << 0 << "\n";
//            exit(0);
//        }
//
//        if (lpar[node] || rpar[node]) {
//            dp[node][0] = 1;
//        } else {
//            dp[node][1] = 1;
//        }
//
//        return;
//    }

    int lc = lpar[node];
    int rc = rpar[node];
    int leftsz = sz[lc] - below[lc];
    int rightsz = sz[rc] - below[rc];
    int lefttaken = below[lc];
    int righttaken = below[rc];
    int space = sz[node] - lefttaken - righttaken;

    if (!left) {
        swap(lc, rc);
        swap(leftsz, rightsz);
        swap(lefttaken, righttaken);
    }

    // the root is somewhere else
    {
        for (int take = 0; take <= leftsz && take <= loc[node]; take++) {
            int takeo = loc[node] - take;

            if (takeo > rightsz) continue;

            for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) {
                int amtleft = min(leftsz, take + i);
                int remain = take + i - amtleft;
                int amtright = min(rightsz, remain + takeo);

                if (amtleft + amtright < loc[node]) continue;

                ll constant = 1;

                if (loc[node] + i == amtleft + amtright + 1) {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant * choose(i, amtleft - take) % MOD * choose(i - (amtleft - take), 1));
                } else {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant % MOD * choose(i, amtleft - take));
                }

                dp[node][i] = (dp[node][i] + ((dp[lc][amtleft] * dp[rc][amtright]) % MOD) * constant) % MOD;
            }
        }
    }

    // take root with itself
    {
        for (int take = 0; take <= leftsz && take < loc[node]; take++) {
            int takeo = loc[node] - take - 1;
            if (takeo > rightsz) continue;

            for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) {

                int amtleft = min(leftsz, take + i);
                int remain = take + i - amtleft;
                int amtright = min(rightsz, remain + takeo);

                if (amtleft + amtright + 1 < loc[node]) continue;

                if (i + loc[node] != space) {
                    continue;
                }

                ll constant;

                if (loc[node] + i == amtleft + amtright + 1) {
                    constant = (choose(loc[node], take) * choose(loc[node] - take, takeo)) % MOD;
                    constant = (constant * choose(i, amtleft - take)) % MOD;
                } else {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant * choose(i, amtleft - take));
                }

                dp[node][i] = (dp[node][i] + ((dp[lc][amtleft] * dp[rc][amtright]) % MOD) * constant) % MOD;
            }
        }
    }
}

int par[10005];

int32_t main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);
//    freopen("", "r", stdin);
//    freopen("", "w", stdout);
    int n, k; cin >> n >> k;
    factorial[0] = 1;
    for (int i = 1; i <= 4004; i++) {
        factorial[i] = (factorial[i - 1] * i) % MOD;
    }

    inverse[0] = 1;
    inverse[1] = 1;
    for (int i = 2; i <= 4004; i++) {
        inverse[i] = MOD - (MOD / i) * inverse[MOD % i] % MOD;
    }

    inversef[0] = 1;
    for (int i = 1; i <= 4004; i++) {
        inversef[i] = (inversef[i-1] * inverse[i]) % MOD;
    }

    if (k > n) {
        cout << "0\n";
        exit(0);
    }
    for (int i = 1; i <= k; i++) {
        int t; cin >> t;
        loc[t]++;
    }
    for (int i = 1; i <= n; i++) {
        cin >> lpar[i] >> rpar[i];
        par[lpar[i]] = par[rpar[i]] = i;
    }
    
    assert(par[1] == 0);

    dp[0][0] = 1;
    dfs(1);

    cout << dp[1][0] % MOD << "\n";
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 468 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 0 ms 340 KB Output is correct
5 Correct 0 ms 468 KB Output is correct
6 Correct 1 ms 468 KB Output is correct
7 Correct 1 ms 468 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 0 ms 468 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 17876 KB Output is correct
2 Correct 56 ms 32776 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 2 ms 1364 KB Output is correct
5 Correct 2 ms 1364 KB Output is correct
6 Correct 12 ms 17876 KB Output is correct
7 Correct 38 ms 26316 KB Output is correct
8 Correct 16 ms 19284 KB Output is correct
9 Correct 32 ms 24424 KB Output is correct
10 Correct 19 ms 20520 KB Output is correct
11 Correct 47 ms 31692 KB Output is correct
12 Correct 0 ms 340 KB Output is correct
13 Correct 32 ms 24504 KB Output is correct
14 Correct 50 ms 29512 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 16 ms 17876 KB Output is correct
17 Correct 33 ms 23868 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 17168 KB Output is correct
2 Correct 11 ms 17876 KB Output is correct
3 Correct 12 ms 17264 KB Output is correct
4 Correct 12 ms 17280 KB Output is correct
5 Correct 11 ms 17236 KB Output is correct
6 Correct 14 ms 17216 KB Output is correct
7 Correct 12 ms 17236 KB Output is correct
8 Correct 13 ms 17236 KB Output is correct
9 Correct 15 ms 17196 KB Output is correct
10 Correct 15 ms 17492 KB Output is correct
11 Correct 15 ms 17364 KB Output is correct
12 Correct 17 ms 19520 KB Output is correct
13 Correct 12 ms 17620 KB Output is correct
14 Correct 12 ms 17236 KB Output is correct
15 Correct 12 ms 17172 KB Output is correct
16 Correct 12 ms 17272 KB Output is correct
17 Correct 11 ms 17276 KB Output is correct
18 Correct 13 ms 17564 KB Output is correct
19 Correct 11 ms 17236 KB Output is correct
20 Correct 6 ms 8864 KB Output is correct
21 Correct 10 ms 16376 KB Output is correct
22 Correct 11 ms 17108 KB Output is correct
23 Correct 11 ms 16724 KB Output is correct
24 Correct 11 ms 17236 KB Output is correct
25 Correct 10 ms 15444 KB Output is correct
26 Correct 11 ms 17096 KB Output is correct
27 Correct 11 ms 16468 KB Output is correct
28 Correct 11 ms 16980 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 468 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 0 ms 340 KB Output is correct
5 Correct 0 ms 468 KB Output is correct
6 Correct 1 ms 468 KB Output is correct
7 Correct 1 ms 468 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 0 ms 468 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 468 KB Output is correct
20 Correct 11 ms 17876 KB Output is correct
21 Correct 56 ms 32776 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 2 ms 1364 KB Output is correct
24 Correct 2 ms 1364 KB Output is correct
25 Correct 12 ms 17876 KB Output is correct
26 Correct 38 ms 26316 KB Output is correct
27 Correct 16 ms 19284 KB Output is correct
28 Correct 32 ms 24424 KB Output is correct
29 Correct 19 ms 20520 KB Output is correct
30 Correct 47 ms 31692 KB Output is correct
31 Correct 0 ms 340 KB Output is correct
32 Correct 32 ms 24504 KB Output is correct
33 Correct 50 ms 29512 KB Output is correct
34 Correct 1 ms 340 KB Output is correct
35 Correct 16 ms 17876 KB Output is correct
36 Correct 33 ms 23868 KB Output is correct
37 Correct 12 ms 17168 KB Output is correct
38 Correct 11 ms 17876 KB Output is correct
39 Correct 12 ms 17264 KB Output is correct
40 Correct 12 ms 17280 KB Output is correct
41 Correct 11 ms 17236 KB Output is correct
42 Correct 14 ms 17216 KB Output is correct
43 Correct 12 ms 17236 KB Output is correct
44 Correct 13 ms 17236 KB Output is correct
45 Correct 15 ms 17196 KB Output is correct
46 Correct 15 ms 17492 KB Output is correct
47 Correct 15 ms 17364 KB Output is correct
48 Correct 17 ms 19520 KB Output is correct
49 Correct 12 ms 17620 KB Output is correct
50 Correct 12 ms 17236 KB Output is correct
51 Correct 12 ms 17172 KB Output is correct
52 Correct 12 ms 17272 KB Output is correct
53 Correct 11 ms 17276 KB Output is correct
54 Correct 13 ms 17564 KB Output is correct
55 Correct 11 ms 17236 KB Output is correct
56 Correct 6 ms 8864 KB Output is correct
57 Correct 10 ms 16376 KB Output is correct
58 Correct 11 ms 17108 KB Output is correct
59 Correct 11 ms 16724 KB Output is correct
60 Correct 11 ms 17236 KB Output is correct
61 Correct 10 ms 15444 KB Output is correct
62 Correct 11 ms 17096 KB Output is correct
63 Correct 11 ms 16468 KB Output is correct
64 Correct 11 ms 16980 KB Output is correct
65 Correct 10 ms 15612 KB Output is correct
66 Correct 11 ms 17236 KB Output is correct
67 Correct 12 ms 15960 KB Output is correct
68 Incorrect 13 ms 17364 KB Output isn't correct
69 Halted 0 ms 0 KB -