Submission #723075

# Submission time Handle Problem Language Result Execution time Memory
723075 2023-04-13T08:20:10 Z 0__0 Bi-ing Lottery Treekets (CCO22_day2problem1) C++17
16 / 25
55 ms 33020 KB
#include "bits/stdc++.h"

using namespace std;

void abc() {cout << endl;}
template <typename T, typename ...U> void abc(T a, U ...b) {
    cout << a << ' ', abc(b...);
}
template <typename T> void printv(T l, T r) {
    while (l != r) cout << *l << " \n"[++l == r];
}
template <typename A, typename B> istream& operator >> (istream& o, pair<A, B> &a) {
    return o >> a.first >> a.second;
}
template <typename A, typename B> ostream& operator << (ostream& o, pair<A, B> a) {
    return o << '(' << a.first << ", " << a.second << ')';
}
template <typename T> ostream& operator << (ostream& o, vector<T> a) {
    bool is = false;
    for (T i : a) {o << (is ? ' ' : '{'), is = true, o << i;}
    return o << '}';
}

#ifdef local
#define test(args...) abc("[" + string(#args) + "]", args)
#else
#define test(args...) void(0)
#endif

using ll = long long;

#define int ll

int loc[10000];
int lpar[10000], rpar[10000];
ll dp[10000][10000]; // at node i, need j balls from above
int above[10000]; //exclusive
int below[10000]; //inclusive
int sz[10000];

const ll MOD = 1e9 + 7;

ll factorial[10000];
ll inverse[10000];
ll inversef[10000];

ll choose(int a, int b) {
    if (a < b) return 0LL;
    return ((factorial[a] % MOD * inversef[b] % MOD) % MOD) * (inversef[a - b]) % MOD;
}

void dfs(int node, int par = -1, bool left = true) {

    below[node] = loc[node];
    sz[node] = 1;

    if (lpar[node]) {
        above[lpar[node]] = above[node] + loc[node];
        dfs(lpar[node], node, true);
        below[node] += below[lpar[node]];
        sz[node] += sz[lpar[node]];
    }
    if (rpar[node]) {
        above[rpar[node]] = above[node] + loc[node];
        dfs(rpar[node], node, false);
        below[node] += below[rpar[node]];
        sz[node] += sz[rpar[node]];
    }

    if (sz[node] < below[node]) {
        cout << 0 << '\n';
        exit(0);
    }


//    if (lpar[node] ==0  && rpar[node] == 0) {
//        if (loc[node] > 1) {
//            cout << 0 << "\n";
//            exit(0);
//        }
//
//        if (lpar[node] || rpar[node]) {
//            dp[node][0] = 1;
//        } else {
//            dp[node][1] = 1;
//        }
//
//        return;
//    }

    int lc = lpar[node];
    int rc = rpar[node];
    int leftsz = sz[lc] - below[lc];
    int rightsz = sz[rc] - below[rc];
    int lefttaken = below[lc];
    int righttaken = below[rc];
    int space = sz[node] - lefttaken - righttaken;

    if (!left) {
        swap(lc, rc);
        swap(leftsz, rightsz);
        swap(lefttaken, righttaken);
    }

    // the root is somewhere else
    {
        for (int take = 0; take <= leftsz && take <= loc[node]; take++) {
            int takeo = loc[node] - take;

            if (takeo > rightsz) continue;

            for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) {
                int amtleft = min(leftsz, take + i);
                int remain = take + i - amtleft;
                int amtright = min(rightsz, remain + takeo);

                if (amtleft + amtright < loc[node]) continue;

                ll constant = 1;

                if (loc[node] + i == amtleft + amtright + 1) {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant * choose(i, amtleft - take) % MOD * choose(i - (amtleft - take), 1));
                } else {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant % MOD * choose(i, amtleft - take));
                }

                dp[node][i] = (dp[node][i] + ((dp[lc][amtleft] * dp[rc][amtright]) % MOD) * constant) % MOD;
            }
        }
    }

    // take root with itself
    {
        for (int take = 0; take <= leftsz && take < loc[node]; take++) {
            int takeo = loc[node] - take - 1;
            if (takeo > rightsz) continue;

            for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) {

                int amtleft = min(leftsz, take + i);
                int remain = take + i - amtleft;
                int amtright = min(rightsz, remain + takeo);

                if (amtleft + amtright + 1 < loc[node]) continue;

                if (i + loc[node] != space) {
                    continue;
                }

                ll constant;

                if (loc[node] + i == amtleft + amtright + 1) {
                    constant = (choose(loc[node], take) * choose(loc[node] - take, takeo)) % MOD;
                    constant = (constant * choose(i, amtleft - take)) % MOD;
                } else {
                    constant = choose(loc[node], take) % MOD;
                    constant = (constant * choose(i, amtleft - take));
                }

                dp[node][i] = (dp[node][i] + ((dp[lc][amtleft] * dp[rc][amtright]) % MOD) * constant) % MOD;
            }
        }
    }
}

int32_t main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);
//    freopen("", "r", stdin);
//    freopen("", "w", stdout);
    int n, k; cin >> n >> k;
    factorial[0] = 1;
    for (int i = 1; i <= 4004; i++) {
        factorial[i] = (factorial[i - 1] * i) % MOD;
    }

    inverse[0] = 1;
    inverse[1] = 1;
    for (int i = 2; i <= 4004; i++) {
        inverse[i] = MOD - (MOD / i) * inverse[MOD % i] % MOD;
    }

    inversef[0] = 1;
    for (int i = 1; i <= 4004; i++) {
        inversef[i] = (inversef[i-1] * inverse[i]) % MOD;
    }

    if (k > n) {
        cout << "0\n";
        exit(0);
    }
    for (int i = 1; i <= k; i++) {
        int t; cin >> t;
        loc[t]++;
    }
    for (int i = 1; i <= n; i++) cin >> lpar[i] >> rpar[i];

    dp[0][0] = 1;
    dfs(1);

    cout << dp[1][0] % MOD << "\n";
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 468 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 468 KB Output is correct
6 Correct 1 ms 468 KB Output is correct
7 Correct 1 ms 468 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 1 ms 468 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 17876 KB Output is correct
2 Correct 55 ms 33020 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 2 ms 1364 KB Output is correct
5 Correct 1 ms 1364 KB Output is correct
6 Correct 11 ms 17876 KB Output is correct
7 Correct 37 ms 26536 KB Output is correct
8 Correct 17 ms 19608 KB Output is correct
9 Correct 31 ms 24752 KB Output is correct
10 Correct 21 ms 20684 KB Output is correct
11 Correct 49 ms 31820 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 34 ms 24660 KB Output is correct
14 Correct 54 ms 29812 KB Output is correct
15 Correct 0 ms 340 KB Output is correct
16 Correct 13 ms 18004 KB Output is correct
17 Correct 32 ms 24136 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 17236 KB Output is correct
2 Correct 11 ms 17896 KB Output is correct
3 Correct 11 ms 17236 KB Output is correct
4 Correct 11 ms 17136 KB Output is correct
5 Correct 14 ms 17180 KB Output is correct
6 Correct 12 ms 17204 KB Output is correct
7 Correct 13 ms 17236 KB Output is correct
8 Correct 12 ms 17268 KB Output is correct
9 Correct 11 ms 17236 KB Output is correct
10 Correct 13 ms 17628 KB Output is correct
11 Correct 11 ms 17236 KB Output is correct
12 Correct 19 ms 19540 KB Output is correct
13 Correct 11 ms 17532 KB Output is correct
14 Correct 11 ms 17236 KB Output is correct
15 Correct 11 ms 17212 KB Output is correct
16 Correct 14 ms 17364 KB Output is correct
17 Correct 11 ms 17236 KB Output is correct
18 Correct 12 ms 17660 KB Output is correct
19 Correct 11 ms 17252 KB Output is correct
20 Correct 5 ms 8788 KB Output is correct
21 Correct 11 ms 16340 KB Output is correct
22 Correct 14 ms 17104 KB Output is correct
23 Correct 11 ms 16728 KB Output is correct
24 Correct 11 ms 17108 KB Output is correct
25 Correct 10 ms 15436 KB Output is correct
26 Correct 11 ms 17108 KB Output is correct
27 Correct 11 ms 16444 KB Output is correct
28 Correct 11 ms 16912 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 468 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 468 KB Output is correct
6 Correct 1 ms 468 KB Output is correct
7 Correct 1 ms 468 KB Output is correct
8 Correct 1 ms 468 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 1 ms 468 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 468 KB Output is correct
20 Correct 11 ms 17876 KB Output is correct
21 Correct 55 ms 33020 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 2 ms 1364 KB Output is correct
24 Correct 1 ms 1364 KB Output is correct
25 Correct 11 ms 17876 KB Output is correct
26 Correct 37 ms 26536 KB Output is correct
27 Correct 17 ms 19608 KB Output is correct
28 Correct 31 ms 24752 KB Output is correct
29 Correct 21 ms 20684 KB Output is correct
30 Correct 49 ms 31820 KB Output is correct
31 Correct 1 ms 340 KB Output is correct
32 Correct 34 ms 24660 KB Output is correct
33 Correct 54 ms 29812 KB Output is correct
34 Correct 0 ms 340 KB Output is correct
35 Correct 13 ms 18004 KB Output is correct
36 Correct 32 ms 24136 KB Output is correct
37 Correct 11 ms 17236 KB Output is correct
38 Correct 11 ms 17896 KB Output is correct
39 Correct 11 ms 17236 KB Output is correct
40 Correct 11 ms 17136 KB Output is correct
41 Correct 14 ms 17180 KB Output is correct
42 Correct 12 ms 17204 KB Output is correct
43 Correct 13 ms 17236 KB Output is correct
44 Correct 12 ms 17268 KB Output is correct
45 Correct 11 ms 17236 KB Output is correct
46 Correct 13 ms 17628 KB Output is correct
47 Correct 11 ms 17236 KB Output is correct
48 Correct 19 ms 19540 KB Output is correct
49 Correct 11 ms 17532 KB Output is correct
50 Correct 11 ms 17236 KB Output is correct
51 Correct 11 ms 17212 KB Output is correct
52 Correct 14 ms 17364 KB Output is correct
53 Correct 11 ms 17236 KB Output is correct
54 Correct 12 ms 17660 KB Output is correct
55 Correct 11 ms 17252 KB Output is correct
56 Correct 5 ms 8788 KB Output is correct
57 Correct 11 ms 16340 KB Output is correct
58 Correct 14 ms 17104 KB Output is correct
59 Correct 11 ms 16728 KB Output is correct
60 Correct 11 ms 17108 KB Output is correct
61 Correct 10 ms 15436 KB Output is correct
62 Correct 11 ms 17108 KB Output is correct
63 Correct 11 ms 16444 KB Output is correct
64 Correct 11 ms 16912 KB Output is correct
65 Correct 11 ms 15536 KB Output is correct
66 Correct 14 ms 17236 KB Output is correct
67 Correct 14 ms 15948 KB Output is correct
68 Incorrect 12 ms 17416 KB Output isn't correct
69 Halted 0 ms 0 KB -