Submission #723033

#TimeUsernameProblemLanguageResultExecution timeMemory
7230330__0Bi-ing Lottery Treekets (CCO22_day2problem1)C++17
0 / 25
76 ms32528 KiB
#include "bits/stdc++.h" using namespace std; void abc() {cout << endl;} template <typename T, typename ...U> void abc(T a, U ...b) { cout << a << ' ', abc(b...); } template <typename T> void printv(T l, T r) { while (l != r) cout << *l << " \n"[++l == r]; } template <typename A, typename B> istream& operator >> (istream& o, pair<A, B> &a) { return o >> a.first >> a.second; } template <typename A, typename B> ostream& operator << (ostream& o, pair<A, B> a) { return o << '(' << a.first << ", " << a.second << ')'; } template <typename T> ostream& operator << (ostream& o, vector<T> a) { bool is = false; for (T i : a) {o << (is ? ' ' : '{'), is = true, o << i;} return o << '}'; } #ifdef local #define test(args...) abc("[" + string(#args) + "]", args) #else #define test(args...) void(0) #endif using ll = long long; int loc[4005]; int lpar[4005], rpar[4005]; ll dp[4005][4005]; // at node i, need j balls from above int above[4005]; //exclusive int below[4005]; //inclusive int sz[4005]; const ll MOD = 1e9 + 7; ll factorial[4005]; ll inverse[4005]; ll choose(int a, int b) { return ((factorial[a] % MOD * inverse[b] % MOD) % MOD) * (inverse[a - b]) % MOD; } void dfs(int node, int par = -1, bool left = true) { below[node] = loc[node]; sz[node] = 1; if (lpar[node]) { above[lpar[node]] = above[node] + loc[node]; dfs(lpar[node], node, true); below[node] += below[lpar[node]]; sz[node] += sz[lpar[node]]; } if (rpar[node]) { above[rpar[node]] = above[node] + loc[node]; dfs(rpar[node], node, false); below[node] += below[rpar[node]]; sz[node] += sz[rpar[node]]; } if (sz[node] < below[node]) { cout << -1 << '\n'; exit(0); } // if (lpar[node] ==0 && rpar[node] == 0) { // if (loc[node] > 1) { // cout << 0 << "\n"; // exit(0); // } // // if (lpar[node] || rpar[node]) { // dp[node][0] = 1; // } else { // dp[node][1] = 1; // } // // return; // } int lc = lpar[node]; int rc = rpar[node]; int leftsz = sz[lc] - below[lc]; int rightsz = sz[rc] - below[rc]; int lefttaken = below[lc]; int righttaken = below[rc]; int space = sz[node] - lefttaken - righttaken; if (!left) { swap(lc, rc); swap(leftsz, rightsz); swap(lefttaken, righttaken); } // the root is somewhere else { for (int take = 0; take <= leftsz && take <= loc[node]; take++) { int takeo = loc[node] - take; for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) { int amtleft = min(leftsz, take + i); int remain = take + i - amtleft; int amtright = min(rightsz, remain); if (amtleft + amtright < loc[node]) continue; ll constant = 1; if (loc[node] + i == amtleft + amtright + 1) { constant = choose(loc[node], take) % MOD; constant = (constant * choose(i, amtleft - take) % MOD * choose(i - (amtleft - take), (amtright - takeo))); } else { constant = choose(loc[node], take) % MOD; constant = (constant % MOD * choose(i, amtleft - take)); } dp[node][i] = (dp[node][i] + ((dp[lc][amtleft] * dp[rc][amtright]) % MOD) * constant) % MOD; } } } // take root with itself { for (int take = 0; take <= leftsz && take < loc[node]; take++) { int takeo = loc[node] - take - 1; for (int i = 0; i <= above[node] && i + loc[node] <= space; i++) { int amtleft = min(leftsz, take + i); int remain = take + i - amtleft; int amtright = min(rightsz, remain); if (amtleft + amtright + 1 < loc[node]) continue; if (i + loc[node] != space) { continue; } ll constant = 1; if (loc[node] + i == amtleft + amtright + 1) { constant = (choose(loc[node], take) * choose(loc[node] - take, takeo)) % MOD; constant = (constant * choose(i, amtleft - take)) % MOD; } else { constant = choose(loc[node], take) % MOD; constant = (constant * choose(i, amtleft - take)); } dp[node][i] = (dp[node][i] + ((dp[lc][amtleft] * dp[rc][amtright]) % MOD) * constant) % MOD; } } } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); // freopen("", "r", stdin); // freopen("", "w", stdout); int n, k; cin >> n >> k; factorial[0] = 1; for (int i = 1; i <= 4004; i++) { factorial[i] = (factorial[i - 1] * i) % MOD; } inverse[0] = 1; inverse[1] = 1; for (int i = 2; i <= 4004; i++) { inverse[i] = MOD - (MOD / i) * inverse[MOD % i] % MOD; } if (k > n) { cout << "0\n"; exit(0); } for (int i = 1; i <= k; i++) { int t; cin >> t; loc[t]++; } for (int i = 1; i <= n; i++) cin >> lpar[i] >> rpar[i]; dp[0][0] = 1; dfs(1); cout << dp[1][0] % MOD << "\n"; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...