# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
721356 | n0sk1ll | Beads and wires (APIO14_beads) | C++14 | 0 ms | 0 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
#define FAST ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);cerr.tie(0)
#define mp make_pair
#define xx first
#define yy second
#define pb push_back
#define pf push_front
#define popb pop_back
#define popf pop_front
#define all(x) x.begin(),x.end()
#define ff(i,a,b) for (li i = a; i < b; i++)
#define fff(i,a,b) for (int i = a; i <= b; i++)
#define bff(i,a,b) for (int i = b-1; i >= a; i--)
#define bfff(i,a,b) for (int i = b; i >= a; i--)
using namespace std;
long double typedef ld;
unsigned int typedef ui;
long long int typedef li;
pair<int,int> typedef pii;
pair<li,li> typedef pli;
pair<ld,ld> typedef pld;
vector<vector<int>> typedef graph;
unsigned long long int typedef ull;
//const int mod = 998244353;
//const int mod = 1000000007;
//Note to self: Check for overflow
#define int li
const li mod=5e12;
vector<vector<pli>> g(200005);
li dp[200005]; //optimalan ans za subtree
li dpdole[200005]; //uzimam iskljucivo dole
li dpgore[200005]; //uzimam iskljucivo gore
void dfs(li p, li q, li qw)
{
vector<li> profit; //koliko profitiram ako uzmem dpdole[child] i ostavim sebi grane za naknadno uparivanje
for (auto it : g[p]) if (it.xx!=q)
{
dfs(it.xx,p,it.yy);
dpdole[p]+=dp[it.xx];
profit.pb(dpdole[it.xx]-dp[it.xx]+it.yy);
}
sort(all(profit),greater<li>());
if (profit.empty()) dpgore[p]=-mod;
if ((li)profit.size()>=1) dpgore[p]=dpdole[p]+qw+profit[0];
if ((li)profit.size()>=2) dpdole[p]=max(dpdole[p],dpdole[p]+profit[0]+profit[1]);
dp[p]=max(dpdole[p],dpgore[p]);
}
li main()
{
li n; cin>>n;
ff(i,1,n)
{
li u,v,w; cin>>u>>v>>w;
g[u].pb({v,w}),g[v].pb({u,w});
}
dfs(1,0,-mod);
cout<<dp[1]<<"\n";
}
//Note to self: Check for overflow
/*
5
1 2 10
1 3 40
1 4 15
1 5 20
10
4 10 2
1 2 21
1 3 13
6 7 1
7 9 5
2 4 3
2 5 8
1 6 55
6 8 34
*/