Submission #718478

#TimeUsernameProblemLanguageResultExecution timeMemory
718478MinhAnhndStove (JOI18_stove)C++14
100 / 100
73 ms9408 KiB
#pragma GCC optimize("O3,unroll-loops") #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt") #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> //long R,n,m,p,totalsum = 0; #define limit 300001 using namespace std; /* vector<int> graph[limit]; int timer = 0, tin[limit], euler_tour[limit]; //int segtree[800000]; // Segment tree for RMQ void dfs(int node = 0, int parent = -1) { tin[node] = timer; // The time when we first visit a node euler_tour[timer++] = node; for (int i : graph[node]) { if (i != parent) { dfs(i, node); euler_tour[timer++] = node; } } } long k = 0; long tmax[limit*2] ={}; long tmin[limit*2] ={}; #include <bits/stdc++.h>*/ typedef long long ll; using namespace std; struct Line { bool type; long double x; ll m, c; }; bool operator<(Line l1, Line l2) { if (l1.type || l2.type) return l1.x < l2.x; return l1.m > l2.m; } set<Line> cht[1]; long cht_pointer = 0; //ll h[100001], w[100001], tot = 0, dp[100001]; bool has_prev(set<Line>::iterator it) { return it != cht[cht_pointer].begin(); } bool has_next(set<Line>::iterator it) { return it != cht[cht_pointer].end() && next(it) != cht[cht_pointer].end(); } long double intersect(set<Line>::iterator l1, set<Line>::iterator l2) { return (long double)(l1->c - l2->c) / (l2->m - l1->m); } void calc_x(set<Line>::iterator it) { if (has_prev(it)) { Line l = *it; l.x = intersect(prev(it), it); cht[cht_pointer].insert(cht[cht_pointer].erase(it), l); } } bool bad(set<Line>::iterator it) { if (has_next(it) && next(it)->c <= it->c) return true; return (has_prev(it) && has_next(it) && intersect(prev(it), next(it)) <= intersect(prev(it), it)); } void add_line(ll m, ll c) { set<Line>::iterator it; it = cht[cht_pointer].lower_bound({0, 0, m, c}); if (it != cht[cht_pointer].end() && it->m == m) { if (it->c <= c) return; cht[cht_pointer].erase(it); } it = cht[cht_pointer].insert({0, 0, m, c}).first; if (bad(it)) cht[cht_pointer].erase(it); else { while (has_prev(it) && bad(prev(it))) cht[cht_pointer].erase(prev(it)); while (has_next(it) && bad(next(it))) cht[cht_pointer].erase(next(it)); if (has_next(it)) calc_x(next(it)); calc_x(it); } } ll query(ll h) { Line l = *prev(cht[cht_pointer].upper_bound({1, (long double)h, 0, 0})); return l.m * h + l.c; } /*long long Y,N, parent[limit] = {}, weight[limit] = {}, dp[limit] ={}, incon[limit] = {}; long long distance_[limit] = {}; long long num_child[limit] ={}; vector<long> children[limit]; stack<long> tovisit; bool visited[limit] = {}; long moveit(ll current){ if (!children[current].empty()) tovisit.push(current); long long sum = 0; for (auto i: children[current]){ //cout<<i<<"checker"; distance_[i] = distance_[current] + weight[i]; sum += moveit(i); //cout<<sum<<"checker"; } if (children[current].empty()) return (long long) 1; num_child[current] = (long long) sum; return sum; }*/ #define T pair<long,long> struct node{ long val, sum; }; long N, M, maxlen = 0; vector<pair<long,long>> adj[limit]; tuple<long,long,long> temp[limit]; pair<long,long> roadid[limit]; pair<long,pair<long,long>> dist[limit]; void dijkstra(int src) { // Source and destination //for (int i = 0; i < N; ++i) dist[i] = LONG_MAX; // Set all distances to infinity for (int i = 1; i <= N; i++) {dist[i].first = LONG_MAX; dist[i].second.first = -1;dist[i].second.second = -1;} priority_queue<T, vector<T>, greater<T>> pq; dist[src].first = 0; // The shortest path from a node to itself is 0 pq.push({0, src}); while (pq.size()) { long cdist; long node; tie(cdist, node) = pq.top(); pq.pop(); if (cdist != dist[node].first) continue; for (pair<int, int> i : adj[node]) { long distance = roadid[i.second].first; if (distance == LONG_MAX) continue; //cout<<distance<<" "<<cdist<<" "<<i.first<<endl; // If we can reach a neighbouring node faster, // we update its minimum distance if (cdist + distance< dist[i.first].first) { dist[i.first].second.first = node; dist[i.first].second.second = i.second; dist[i.first].first = cdist + distance; pq.push({dist[i.first].first, i.first}); } } } } #define lim 100001 int main(){ long N,K,A[lim] = {},Delta[lim] = {},total = 0; cin>>N>>K; for(long i = 1;i<=N;i++){ cin>>A[i]; } total = A[N]-A[1]+1; for(long i = 1;i<=N-1;i++){ Delta[i]= A[i+1]-A[i]; } sort(Delta + 1,Delta+N,greater<long>()); for(long i = 1;i<=K-1;i++){ total -=(Delta[i]-1); } cout<<total; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...