Submission #715901

# Submission time Handle Problem Language Result Execution time Memory
715901 2023-03-28T11:33:48 Z pavement Harvest (JOI20_harvest) C++17
25 / 100
5000 ms 154676 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#define int long long
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define ppb pop_back
#define eb emplace_back
#define g0(a) get<0>(a)
#define g1(a) get<1>(a)
#define g2(a) get<2>(a)
#define g3(a) get<3>(a)
#define g4(a) get<4>(a)
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
using db = double;
using ll = long long;
using ld = long double;
using ii = pair<int, int>;
using iii = tuple<int, int, int>;
using iiii = tuple<int, int, int, int>;
using iiiii = tuple<int, int, int, int, int>;
template<class key, class value = null_type, class cmp = less<key> >
using ordered_set = tree<key, value, cmp, rb_tree_tag, tree_order_statistics_node_update>;

int N, M, L, C, Q, root, A[200005], B[200005], off[200005], lnk[200005], sz[200005], ans[200005];
bool on_cycle[200005];
ii to[200005];
vector<int> S[200005];
vector<ii> adj[200005], qu[200005];

int find(int x) {
	if (x == lnk[x]) return x;
	return lnk[x] = find(lnk[x]);
}

void unite(int a, int b) {
	a = find(a);
	b = find(b);
	if (a == b) return;
	if (sz[b] > sz[a]) swap(a, b);
	sz[a] += sz[b];
	lnk[b] = a;
}

template <class T>
struct wavelet_matrix {
    using size_type = uint32_t;
    struct bit_vector {
        static constexpr size_type wsize = 64;
        static size_type rank64(uint64_t x, size_type i) {
            return __builtin_popcountll(x & ((1ULL << i) - 1));
        }
#pragma pack(4)
        struct block_t {
            uint64_t bit;
            size_type sum;
        };
#pragma pack()
        size_type n, zeros;
        vector<block_t> block;
        bit_vector(size_type _n = 0) : n(_n), block(n / wsize + 1) {}
        int operator[](size_type i) const {
            return block[i / wsize].bit >> i % wsize & 1;
        }
        void set(size_type i) {
            block[i / wsize].bit |= (uint64_t)1 << i % wsize;
        }
        void build() {
            for (size_type j = 0; j < n / wsize; ++j)
                block[j + 1].sum =
                    block[j].sum + __builtin_popcountll(block[j].bit);
            zeros = rank0(n);
        }
        size_type rank0(size_type i) const { return i - rank1(i); }
        size_type rank1(size_type i) const {
            auto&& e = block[i / wsize];
            return e.sum + rank64(e.bit, i % wsize);
        }
    };
    size_type n, lg;
    vector<T> a;
    vector<bit_vector> bv;
    wavelet_matrix(size_type _n = 0) : n(_n), a(n) {}
    wavelet_matrix(const vector<T>& _a) : n(_a.size()), a(_a) { build(); }
    T& operator[](size_type i) { return a[i]; }
    void build() {
        lg = __lg(max<T>(
                 *max_element(begin(a), end(a)), 1)) +
             1;
        bv.assign(lg, n);
        vector<T> cur = a, nxt(n);
        for (auto h = lg; h--;) {
            for (size_type i = 0; i < n; ++i)
                if (cur[i] >> h & 1) bv[h].set(i);
            bv[h].build();
            array it{begin(nxt), begin(nxt) + bv[h].zeros};
            for (size_type i = 0; i < n; ++i) *it[bv[h][i]]++ = cur[i];
            swap(cur, nxt);
        }
    }
    // find kth element in [l, r), 0 indexed
    T kth(size_type l, size_type r, size_type k) const {
        T res = 0;
        for (auto h = lg; h--;) {
            auto l0 = bv[h].rank0(l), r0 = bv[h].rank0(r);
            if (k < r0 - l0)
                l = l0, r = r0;
            else {
                k -= r0 - l0;
                res |= (T)1 << h;
                l += bv[h].zeros - l0;
                r += bv[h].zeros - r0;
            }
        }
        return res;
    }
    // count i in [l..r) satisfying a[i] < ub
    size_type count(size_type l, size_type r, T ub) const {
        if (ub >= (T)1 << lg) return r - l;
        size_type res = 0;
        for (auto h = lg; h--;) {
            auto l0 = bv[h].rank0(l), r0 = bv[h].rank0(r);
            if (~ub >> h & 1)
                l = l0, r = r0;
            else {
                res += r0 - l0;
                l += bv[h].zeros - l0;
                r += bv[h].zeros - r0;
            }
        }
        return res;
    }
    size_type count(size_type l, size_type r, T lb, T ub) const {
        return count(l, r, ub) - count(l, r, lb);
    }
};

template <class T>
auto zip(const vector<T>& a) {
    int n = size(a);
    vector<pair<T, int>> p(n);
    for (int i = 0; i < n; ++i) p[i] = {a[i], i};
    sort(begin(p), end(p));
    vector<int> na(n);
    vector<T> v;
    for (int k = 0, rnk = -1; k < n; ++k) {
        if (k == 0 or p[k - 1].first < p[k].first)
            v.push_back(p[k].first), ++rnk;
        na[p[k].second] = rnk;
    }
    return make_pair(na, v);
}

vector<int> wav;
vector<iiii> to_qry;

void solve_tree(int n, int d) {
	assert(!on_cycle[n]);
	int lb = (int)wav.size();
	for (auto v : S[n]) {
		wav.pb(v + d);
		S[root].pb(v + d);
	}
	for (auto [u, w] : adj[n]) {
		solve_tree(u, d + w);
	}
	for (auto [v, idx] : qu[n]) {
		to_qry.eb(lb, (int)wav.size(), v + d + 1, idx);
	}
}

vector<iii> adds[400005], qus[400005];
stack<int> updated;

int ft[400005];

int ls(int x) { return x & -x; }

int ft_qry(int p) {
	int r = 0;
	for (; p; p -= ls(p)) r += ft[p];
	return r;
}

void ft_upd(int p, int sz) {
	for (; p <= sz; p += ls(p)) {
		updated.push(p);
		ft[p]++;
	}
}

void ft_reset() {
	while (!updated.empty()) {
		int cur = updated.top();
		ft[cur] = 0;
		updated.pop();
	}
}

void cdq(int l, int r) {
	if (l == r) return;
	int m = (l + r) / 2;
	vector<iii> sort_by;
	for (int i = l; i <= m; i++) {
		for (auto [a, q, r] : adds[i]) {
			sort_by.eb(a, q, r);
		}
	}
	for (int i = m + 1; i <= r; i++) {
		for (auto [b, r, idx] : qus[i]) {
			sort_by.eb(b, r, -idx);
		}
	}
	int pf = 0;
	ordered_set<ii> O;
	sort(sort_by.begin(), sort_by.end(), [](const auto &lhs, const auto &rhs) {
		if (g0(lhs) != g0(rhs)) return lhs < rhs;
		else if ((g2(lhs) >= 0) != (g2(rhs) >= 0)) return g2(lhs) > g2(rhs);
		else return lhs < rhs;
	});
	vector<int> disc;
	for (auto [a, b, c] : sort_by) {
		if (c < 0) disc.pb(b);
		else disc.pb(c);
	}
	sort(disc.begin(), disc.end());
	disc.erase(unique(disc.begin(), disc.end()), disc.end());
	ft_reset();
	for (auto [a, b, c] : sort_by) {
		if (c < 0) {
			b = lower_bound(disc.begin(), disc.end(), b) - disc.begin() + 1;
			ans[-c] -= ft_qry(b) + pf;
		} else {
			pf += b;
			c = lower_bound(disc.begin(), disc.end(), c) - disc.begin() + 1;
			ft_upd(c, (int)disc.size());
		}
	}
	cdq(l, m);
	cdq(m + 1, r);
}

main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cin >> N >> M >> L >> C;
	for (int i = 1; i <= N; i++) {
		cin >> A[i];
		lnk[i] = i;
		sz[i] = 1;
	}
	for (int i = 1; i <= N; i++) {
		int pos = ((A[i] - C) % L + L) % L;
		auto it = upper_bound(A + 1, A + 1 + N, pos);
		if (it == A + 1) {
			to[i] = mp(N, pos + L - A[N] + C);
		} else {
			--it;
			to[i] = mp(it - A, pos - *it + C);
		}
		unite(i, to[i].first);
		adj[to[i].first].eb(i, to[i].second);
	}
	for (int i = 1; i <= M; i++) {
		cin >> B[i];
		auto it = lower_bound(A + 1, A + 1 + N, B[i]);
		if (it == A + 1) {
			S[N].pb(B[i] + L - A[N]);
		} else {
			--it;
			S[it - A].pb(B[i] - *it);
		}
	}
	cin >> Q;
	for (int i = 1, V, T; i <= Q; i++) {
		cin >> V >> T;
		qu[V].eb(T, i);
	}
	// handle nodes not on cycle
	for (int i = 1; i <= N; i++) {
		if (i == find(i)) {
			int tort = i, hare = i;
			do {
				hare = to[to[hare].first].first;
				tort = to[tort].first;
			} while (tort != hare);
			do {
				on_cycle[tort] = 1;
				tort = to[tort].first;
			} while (tort != hare);
		}
	}
	for (int i = 1; i <= N; i++) {
		if (on_cycle[i]) {
			root = i;
			wav.clear();
			to_qry.clear();
			for (auto [u, w] : adj[i]) if (!on_cycle[u]) {
				solve_tree(u, w);
			}
			if (wav.empty()) continue;
			auto [na, v] = zip(wav);
			wavelet_matrix wm(na);
			for (auto [l, r, k, idx] : to_qry) {
				if (l < r) {
					for (int j = l; j < r; j++) {
						ans[idx] += (wav[j] < k);
					}
					//~ ans[idx] += wm.count(l, r, upper_bound(v.begin(), v.end(), k) - v.begin());
				}
			}
		}
	}
	// handle nodes on cycle
	for (int i = 1; i <= N; i++) {
		if (i == find(i)) {
			int tort = i, hare = i;
			do {
				hare = to[to[hare].first].first;
				tort = to[tort].first;
			} while (tort != hare);
			vector<int> ord;
			int len = 0;
			do {
				ord.pb(tort);
				len += to[tort].second;
				tort = to[tort].first;
			} while (tort != hare);
			int P = 0, cnt = 0;
			vector<int> disc;
			ft_reset();
			qus[0].clear();
			for (auto x : ord) {
				adds[cnt].clear();
				for (auto v : S[x]) {
					int a = v + off[x] - P;
					int q2 = a / len, r2 = a % len;
					if (r2 < 0) {
						r2 += len;
						q2--;
					}
					adds[cnt].eb(a, q2, len - r2);
					disc.pb(a);
				}
				qus[cnt + 1].clear();
				for (auto [t, idx] : qu[x]) {
					int b = t - P + len;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					qus[cnt + 1].eb(b, len - r1 - 1, idx);
					disc.pb(b);
				}
				P += to[x].second;
				cnt++;
			}
			P = 0;
			sort(disc.begin(), disc.end());
			disc.erase(unique(disc.begin(), disc.end()), disc.end());
			for (auto x : ord) {
				for (auto v : S[x]) {
					int a = v + off[x] - P;
					int da = lower_bound(disc.begin(), disc.end(), a) - disc.begin() + 1;
					ft_upd(da, (int)disc.size());
				}
				for (auto [t, idx] : qu[x]) {
					int b = t - P + len;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					int db = lower_bound(disc.begin(), disc.end(), b) - disc.begin() + 1;
					ans[idx] += q1 * ft_qry(db);
				}
				P += to[x].second;
			}
			adds[cnt].clear();
			cnt++;
			if (cnt) cdq(0, cnt - 1);
			reverse(ord.begin(), ord.end());
			P = cnt = 0;
			disc.clear();
			ft_reset();
			for (auto x : ord) {
				adds[cnt].clear();
				qus[cnt].clear();
				P += to[x].second;
				for (auto v : S[x]) {
					int a = v + off[x] + P;
					int q2 = a / len, r2 = a % len;
					if (r2 < 0) {
						r2 += len;
						q2--;
					}
					disc.pb(a);
					adds[cnt].eb(a, q2, len - r2);
				}
				for (auto [t, idx] : qu[x]) {
					int b = t + P;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					qus[cnt].eb(b, len - r1 - 1, idx);
					disc.pb(b);
				}
				cnt++;
			}
			P = 0;
			sort(disc.begin(), disc.end());
			disc.erase(unique(disc.begin(), disc.end()), disc.end());
			for (auto x : ord) {
				P += to[x].second;
				for (auto [t, idx] : qu[x]) {
					int b = t + P;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					int db = lower_bound(disc.begin(), disc.end(), b) - disc.begin() + 1;
					ans[idx] += q1 * ft_qry(db);
				}
				for (auto v : S[x]) {
					int a = v + off[x] + P;
					int da = lower_bound(disc.begin(), disc.end(), a) - disc.begin() + 1;
					ft_upd(da, (int)disc.size());
				}
			}
			if (cnt) cdq(0, cnt - 1);
		}
	}
	for (int i = 1; i <= Q; i++) {
		cout << ans[i] << '\n';
	}
}

Compilation message

harvest.cpp:246:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type]
  246 | main() {
      | ^~~~
# Verdict Execution time Memory Grader output
1 Correct 24 ms 33672 KB Output is correct
2 Correct 21 ms 33568 KB Output is correct
3 Correct 26 ms 34300 KB Output is correct
4 Correct 24 ms 34548 KB Output is correct
5 Correct 27 ms 34660 KB Output is correct
6 Correct 28 ms 34700 KB Output is correct
7 Correct 32 ms 34724 KB Output is correct
8 Correct 21 ms 34252 KB Output is correct
9 Correct 21 ms 34224 KB Output is correct
10 Correct 19 ms 34244 KB Output is correct
11 Correct 20 ms 34308 KB Output is correct
12 Correct 31 ms 34504 KB Output is correct
13 Correct 37 ms 34532 KB Output is correct
14 Correct 33 ms 34124 KB Output is correct
15 Correct 22 ms 34512 KB Output is correct
16 Correct 23 ms 34516 KB Output is correct
17 Correct 25 ms 34532 KB Output is correct
18 Correct 25 ms 34480 KB Output is correct
19 Correct 25 ms 34456 KB Output is correct
20 Correct 23 ms 34520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 287 ms 60196 KB Output is correct
2 Correct 194 ms 58256 KB Output is correct
3 Correct 227 ms 54892 KB Output is correct
4 Correct 338 ms 74344 KB Output is correct
5 Correct 479 ms 87044 KB Output is correct
6 Correct 749 ms 87116 KB Output is correct
7 Correct 166 ms 58372 KB Output is correct
8 Correct 177 ms 58396 KB Output is correct
9 Correct 1042 ms 76108 KB Output is correct
10 Correct 1957 ms 154676 KB Output is correct
11 Correct 1126 ms 76212 KB Output is correct
12 Correct 1118 ms 76192 KB Output is correct
13 Correct 1152 ms 76132 KB Output is correct
14 Correct 1479 ms 128496 KB Output is correct
15 Correct 958 ms 67552 KB Output is correct
16 Correct 304 ms 74576 KB Output is correct
17 Correct 446 ms 74168 KB Output is correct
18 Correct 283 ms 53840 KB Output is correct
19 Correct 380 ms 53920 KB Output is correct
20 Correct 165 ms 58868 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 24 ms 33672 KB Output is correct
2 Correct 21 ms 33568 KB Output is correct
3 Correct 26 ms 34300 KB Output is correct
4 Correct 24 ms 34548 KB Output is correct
5 Correct 27 ms 34660 KB Output is correct
6 Correct 28 ms 34700 KB Output is correct
7 Correct 32 ms 34724 KB Output is correct
8 Correct 21 ms 34252 KB Output is correct
9 Correct 21 ms 34224 KB Output is correct
10 Correct 19 ms 34244 KB Output is correct
11 Correct 20 ms 34308 KB Output is correct
12 Correct 31 ms 34504 KB Output is correct
13 Correct 37 ms 34532 KB Output is correct
14 Correct 33 ms 34124 KB Output is correct
15 Correct 22 ms 34512 KB Output is correct
16 Correct 23 ms 34516 KB Output is correct
17 Correct 25 ms 34532 KB Output is correct
18 Correct 25 ms 34480 KB Output is correct
19 Correct 25 ms 34456 KB Output is correct
20 Correct 23 ms 34520 KB Output is correct
21 Correct 287 ms 60196 KB Output is correct
22 Correct 194 ms 58256 KB Output is correct
23 Correct 227 ms 54892 KB Output is correct
24 Correct 338 ms 74344 KB Output is correct
25 Correct 479 ms 87044 KB Output is correct
26 Correct 749 ms 87116 KB Output is correct
27 Correct 166 ms 58372 KB Output is correct
28 Correct 177 ms 58396 KB Output is correct
29 Correct 1042 ms 76108 KB Output is correct
30 Correct 1957 ms 154676 KB Output is correct
31 Correct 1126 ms 76212 KB Output is correct
32 Correct 1118 ms 76192 KB Output is correct
33 Correct 1152 ms 76132 KB Output is correct
34 Correct 1479 ms 128496 KB Output is correct
35 Correct 958 ms 67552 KB Output is correct
36 Correct 304 ms 74576 KB Output is correct
37 Correct 446 ms 74168 KB Output is correct
38 Correct 283 ms 53840 KB Output is correct
39 Correct 380 ms 53920 KB Output is correct
40 Correct 165 ms 58868 KB Output is correct
41 Correct 946 ms 121140 KB Output is correct
42 Correct 287 ms 65908 KB Output is correct
43 Correct 306 ms 76452 KB Output is correct
44 Correct 486 ms 111824 KB Output is correct
45 Execution timed out 5027 ms 110976 KB Time limit exceeded
46 Halted 0 ms 0 KB -