Submission #715896

# Submission time Handle Problem Language Result Execution time Memory
715896 2023-03-28T11:11:25 Z pavement Harvest (JOI20_harvest) C++17
20 / 100
1907 ms 161520 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#define int long long
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define ppb pop_back
#define eb emplace_back
#define g0(a) get<0>(a)
#define g1(a) get<1>(a)
#define g2(a) get<2>(a)
#define g3(a) get<3>(a)
#define g4(a) get<4>(a)
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
using db = double;
using ll = long long;
using ld = long double;
using ii = pair<int, int>;
using iii = tuple<int, int, int>;
using iiii = tuple<int, int, int, int>;
using iiiii = tuple<int, int, int, int, int>;
template<class key, class value = null_type, class cmp = less<key> >
using ordered_set = tree<key, value, cmp, rb_tree_tag, tree_order_statistics_node_update>;

int N, M, L, C, Q, root, A[200005], B[200005], off[200005], lnk[200005], sz[200005], ans[200005];
bool on_cycle[200005];
ii to[200005];
vector<int> S[200005];
vector<ii> adj[200005], qu[200005];

int find(int x) {
	if (x == lnk[x]) return x;
	return lnk[x] = find(lnk[x]);
}

void unite(int a, int b) {
	a = find(a);
	b = find(b);
	if (a == b) return;
	if (sz[b] > sz[a]) swap(a, b);
	sz[a] += sz[b];
	lnk[b] = a;
}

template <class T>
struct wavelet_matrix {
    using size_type = uint32_t;
    struct bit_vector {
        static constexpr size_type wsize = 64;
        static size_type rank64(uint64_t x, size_type i) {
            return __builtin_popcountll(x & ((1ULL << i) - 1));
        }
#pragma pack(4)
        struct block_t {
            uint64_t bit;
            size_type sum;
        };
#pragma pack()
        size_type n, zeros;
        vector<block_t> block;
        bit_vector(size_type _n = 0) : n(_n), block(n / wsize + 1) {}
        int operator[](size_type i) const {
            return block[i / wsize].bit >> i % wsize & 1;
        }
        void set(size_type i) {
            block[i / wsize].bit |= (uint64_t)1 << i % wsize;
        }
        void build() {
            for (size_type j = 0; j < n / wsize; ++j)
                block[j + 1].sum =
                    block[j].sum + __builtin_popcountll(block[j].bit);
            zeros = rank0(n);
        }
        size_type rank0(size_type i) const { return i - rank1(i); }
        size_type rank1(size_type i) const {
            auto&& e = block[i / wsize];
            return e.sum + rank64(e.bit, i % wsize);
        }
    };
    size_type n, lg;
    vector<T> a;
    vector<bit_vector> bv;
    wavelet_matrix(size_type _n = 0) : n(_n), a(n) {}
    wavelet_matrix(const vector<T>& _a) : n(_a.size()), a(_a) { build(); }
    T& operator[](size_type i) { return a[i]; }
    void build() {
        lg = __lg(max<T>(
                 *max_element(begin(a), end(a)), 1)) +
             1;
        bv.assign(lg, n);
        vector<T> cur = a, nxt(n);
        for (auto h = lg; h--;) {
            for (size_type i = 0; i < n; ++i)
                if (cur[i] >> h & 1) bv[h].set(i);
            bv[h].build();
            array it{begin(nxt), begin(nxt) + bv[h].zeros};
            for (size_type i = 0; i < n; ++i) *it[bv[h][i]]++ = cur[i];
            swap(cur, nxt);
        }
    }
    // find kth element in [l, r), 0 indexed
    T kth(size_type l, size_type r, size_type k) const {
        T res = 0;
        for (auto h = lg; h--;) {
            auto l0 = bv[h].rank0(l), r0 = bv[h].rank0(r);
            if (k < r0 - l0)
                l = l0, r = r0;
            else {
                k -= r0 - l0;
                res |= (T)1 << h;
                l += bv[h].zeros - l0;
                r += bv[h].zeros - r0;
            }
        }
        return res;
    }
    // count i in [l..r) satisfying a[i] < ub
    size_type count(size_type l, size_type r, T ub) const {
        if (ub >= (T)1 << lg) return r - l;
        size_type res = 0;
        for (auto h = lg; h--;) {
            auto l0 = bv[h].rank0(l), r0 = bv[h].rank0(r);
            if (~ub >> h & 1)
                l = l0, r = r0;
            else {
                res += r0 - l0;
                l += bv[h].zeros - l0;
                r += bv[h].zeros - r0;
            }
        }
        return res;
    }
    size_type count(size_type l, size_type r, T lb, T ub) const {
        return count(l, r, ub) - count(l, r, lb);
    }
};

template <class T>
auto zip(const vector<T>& a) {
    int n = size(a);
    vector<pair<T, int>> p(n);
    for (int i = 0; i < n; ++i) p[i] = {a[i], i};
    sort(begin(p), end(p));
    vector<int> na(n);
    vector<T> v;
    for (int k = 0, rnk = -1; k < n; ++k) {
        if (k == 0 or p[k - 1].first < p[k].first)
            v.push_back(p[k].first), ++rnk;
        na[p[k].second] = rnk;
    }
    return make_pair(na, v);
}

vector<int> wav;
vector<iiii> to_qry;

void solve_tree(int n, int d) {
	assert(!on_cycle[n]);
	int lb = (int)wav.size();
	for (auto v : S[n]) {
		wav.pb(v - d);
		S[root].pb(v + d);
	}
	for (auto [u, w] : adj[n]) {
		solve_tree(u, d + w);
	}
	for (auto [v, idx] : qu[n]) {
		to_qry.eb(lb, (int)wav.size(), v - d + 1, idx);
	}
}

vector<iii> adds[400005], qus[400005];
stack<int> updated;

int ft[400005];

int ls(int x) { return x & -x; }

int ft_qry(int p) {
	int r = 0;
	for (; p; p -= ls(p)) r += ft[p];
	return r;
}

void ft_upd(int p, int sz) {
	for (; p <= sz; p += ls(p)) {
		updated.push(p);
		ft[p]++;
	}
}

void ft_reset() {
	while (!updated.empty()) {
		int cur = updated.top();
		ft[cur] = 0;
		updated.pop();
	}
}

void cdq(int l, int r) {
	if (l == r) return;
	int m = (l + r) / 2;
	vector<iii> sort_by;
	for (int i = l; i <= m; i++) {
		for (auto [a, q, r] : adds[i]) {
			sort_by.eb(a, q, r);
		}
	}
	for (int i = m + 1; i <= r; i++) {
		for (auto [b, r, idx] : qus[i]) {
			sort_by.eb(b, r, -idx);
		}
	}
	int pf = 0;
	ordered_set<ii> O;
	sort(sort_by.begin(), sort_by.end(), [](const auto &lhs, const auto &rhs) {
		if (g0(lhs) == g0(rhs) && (g2(lhs) >= 0) != (g2(rhs) >= 0)) return g2(lhs) > g2(rhs);
		else return lhs < rhs;
	});
	vector<int> disc;
	for (auto [a, b, c] : sort_by) {
		if (c < 0) disc.pb(b);
		else disc.pb(c);
	}
	sort(disc.begin(), disc.end());
	disc.erase(unique(disc.begin(), disc.end()), disc.end());
	ft_reset();
	for (auto [a, b, c] : sort_by) {
		if (c < 0) {
			b = lower_bound(disc.begin(), disc.end(), b) - disc.begin() + 1;
			ans[-c] -= ft_qry(b) + pf;
		} else {
			pf += b;
			c = lower_bound(disc.begin(), disc.end(), c) - disc.begin() + 1;
			ft_upd(c, (int)disc.size());
		}
	}
	cdq(l, m);
	cdq(m + 1, r);
}

main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cin >> N >> M >> L >> C;
	for (int i = 1; i <= N; i++) {
		cin >> A[i];
		lnk[i] = i;
		sz[i] = 1;
	}
	for (int i = 1; i <= N; i++) {
		int pos = ((A[i] - C) % L + L) % L;
		auto it = upper_bound(A + 1, A + 1 + N, pos);
		if (it == A + 1) {
			to[i] = mp(N, pos + L - A[N] + C);
		} else {
			--it;
			to[i] = mp(it - A, pos - *it + C);
		}
		unite(i, to[i].first);
		adj[to[i].first].eb(i, to[i].second);
	}
	for (int i = 1; i <= M; i++) {
		cin >> B[i];
		auto it = lower_bound(A + 1, A + 1 + N, B[i]);
		if (it == A + 1) {
			S[N].pb(B[i] + L - A[N]);
		} else {
			--it;
			S[it - A].pb(B[i] - *it);
		}
	}
	cin >> Q;
	for (int i = 1, V, T; i <= Q; i++) {
		cin >> V >> T;
		qu[V].eb(T, i);
	}
	// handle nodes not on cycle
	for (int i = 1; i <= N; i++) {
		if (i == find(i)) {
			int tort = i, hare = i;
			do {
				hare = to[to[hare].first].first;
				tort = to[tort].first;
			} while (tort != hare);
			do {
				on_cycle[tort] = 1;
				tort = to[tort].first;
			} while (tort != hare);
		}
	}
	for (int i = 1; i <= N; i++) {
		if (on_cycle[i]) {
			root = i;
			wav.clear();
			to_qry.clear();
			for (auto [u, w] : adj[i]) if (!on_cycle[u]) {
				solve_tree(u, w);
			}
			if (!wav.empty()) {
				auto [na, v] = zip(wav);
				wavelet_matrix wm(na);
				for (auto [l, r, k, idx] : to_qry) {
					ans[idx] += wm.count(l, r, k);
				}
			}
		}
	}
	// handle nodes on cycle
	for (int i = 1; i <= N; i++) {
		if (i == find(i)) {
			int tort = i, hare = i;
			do {
				hare = to[to[hare].first].first;
				tort = to[tort].first;
			} while (tort != hare);
			vector<int> ord;
			int len = 0;
			do {
				ord.pb(tort);
				len += to[tort].second;
				tort = to[tort].first;
			} while (tort != hare);
			int P = 0, cnt = 0;
			vector<int> disc;
			ft_reset();
			qus[0].clear();
			for (auto x : ord) {
				adds[cnt].clear();
				for (auto v : S[x]) {
					int a = v + off[x] - P;
					int q2 = a / len, r2 = a % len;
					if (r2 < 0) {
						r2 += len;
						q2--;
					}
					adds[cnt].eb(a, q2, len - r2);
					disc.pb(a);
				}
				qus[cnt + 1].clear();
				for (auto [t, idx] : qu[x]) {
					int b = t - P + len;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					qus[cnt + 1].eb(b, len - r1 - 1, idx);
					disc.pb(b);
				}
				P += to[x].second;
				cnt++;
			}
			P = 0;
			sort(disc.begin(), disc.end());
			disc.erase(unique(disc.begin(), disc.end()), disc.end());
			for (auto x : ord) {
				for (auto v : S[x]) {
					int a = v + off[x] - P;
					int da = lower_bound(disc.begin(), disc.end(), a) - disc.begin() + 1;
					ft_upd(da, (int)disc.size());
				}
				for (auto [t, idx] : qu[x]) {
					int b = t - P + len;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					int db = lower_bound(disc.begin(), disc.end(), b) - disc.begin() + 1;
					ans[idx] += q1 * ft_qry(db);
				}
				P += to[x].second;
			}
			adds[cnt].clear();
			cnt++;
			if (cnt) cdq(0, cnt - 1);
			reverse(ord.begin(), ord.end());
			P = cnt = 0;
			disc.clear();
			ft_reset();
			for (auto x : ord) {
				adds[cnt].clear();
				qus[cnt].clear();
				P += to[x].second;
				for (auto v : S[x]) {
					int a = v + off[x] + P;
					int q2 = a / len, r2 = a % len;
					if (r2 < 0) {
						r2 += len;
						q2--;
					}
					disc.pb(a);
					adds[cnt].eb(a, q2, len - r2);
				}
				for (auto [t, idx] : qu[x]) {
					int b = t + P;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					qus[cnt].eb(b, len - r1 - 1, idx);
					disc.pb(b);
				}
				cnt++;
			}
			P = 0;
			sort(disc.begin(), disc.end());
			disc.erase(unique(disc.begin(), disc.end()), disc.end());
			for (auto x : ord) {
				P += to[x].second;
				for (auto [t, idx] : qu[x]) {
					int b = t + P;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					int db = lower_bound(disc.begin(), disc.end(), b) - disc.begin() + 1;
					ans[idx] += q1 * ft_qry(db);
				}
				for (auto v : S[x]) {
					int a = v + off[x] + P;
					int da = lower_bound(disc.begin(), disc.end(), a) - disc.begin() + 1;
					ft_upd(da, (int)disc.size());
				}
			}
			if (cnt) cdq(0, cnt - 1);
		}
	}
	for (int i = 1; i <= Q; i++) {
		cout << ans[i] << '\n';
	}
}

Compilation message

harvest.cpp:245:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type]
  245 | main() {
      | ^~~~
# Verdict Execution time Memory Grader output
1 Correct 20 ms 33744 KB Output is correct
2 Correct 21 ms 33876 KB Output is correct
3 Correct 23 ms 34388 KB Output is correct
4 Incorrect 28 ms 34504 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 255 ms 60720 KB Output is correct
2 Correct 203 ms 58516 KB Output is correct
3 Correct 211 ms 55176 KB Output is correct
4 Correct 339 ms 74580 KB Output is correct
5 Correct 181 ms 87336 KB Output is correct
6 Correct 194 ms 93980 KB Output is correct
7 Correct 171 ms 65316 KB Output is correct
8 Correct 161 ms 65248 KB Output is correct
9 Correct 1012 ms 82952 KB Output is correct
10 Correct 1907 ms 161520 KB Output is correct
11 Correct 1095 ms 83192 KB Output is correct
12 Correct 1084 ms 83160 KB Output is correct
13 Correct 1125 ms 83260 KB Output is correct
14 Correct 1395 ms 135608 KB Output is correct
15 Correct 917 ms 74500 KB Output is correct
16 Correct 184 ms 81388 KB Output is correct
17 Correct 192 ms 81112 KB Output is correct
18 Correct 137 ms 59216 KB Output is correct
19 Correct 133 ms 59100 KB Output is correct
20 Correct 208 ms 65400 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 20 ms 33744 KB Output is correct
2 Correct 21 ms 33876 KB Output is correct
3 Correct 23 ms 34388 KB Output is correct
4 Incorrect 28 ms 34504 KB Output isn't correct
5 Halted 0 ms 0 KB -