Submission #707669

#TimeUsernameProblemLanguageResultExecution timeMemory
707669JohannCatfish Farm (IOI22_fish)C++17
100 / 100
229 ms64684 KiB
#include "fish.h" #include "bits/stdc++.h" using namespace std; typedef long long ll; typedef pair<ll, ll> pii; typedef vector<ll> vi; typedef vector<vi> vvi; typedef vector<pii> vpii; typedef vector<vpii> vvpii; typedef map<ll, ll> mii; typedef vector<mii> vmii; #define sz(x) (int)(x).size() #define all(x) (x).begin(), (x).end() const ll INF = 3e5 * 1e9 + 100; void updateIdx(ll y, ll &ny, vpii::iterator &itpref0, ll &pref0) { while (itpref0->first <= y) { pref0 = itpref0->second; ++itpref0; } ny = min(itpref0->first, ny); } long long max_weights(int N, int M, std::vector<int> X, std::vector<int> Y, std::vector<int> W) { vvpii grid(N + 4); // becomes prefix grid for (int x = 0; x < sz(grid); ++x) grid[x].push_back({0, 0}); for (int i = 0; i < M; ++i) grid[X[i] + 3].push_back({Y[i] + 1, W[i]}); // Transformation in Y Richtung... for (int x = 0; x < sz(grid); ++x) sort(all(grid[x])); for (int x = 0; x < sz(grid); ++x) { ll pref = 0; for (int i = 0; i < sz(grid[x]); ++i) { grid[x][i].second += pref; pref = grid[x][i].second; } grid[x].push_back({N + 1, pref}); } vvpii dpg(sz(grid)); // growth stack thing vvpii dp(sz(grid)); // normal all dp vi dpm(sz(grid), 0); // maximum einer Spaltes for (int i = 0; i < 3; ++i) { dp[i].push_back({0, 0}); dp[i].push_back({N + 1, 0}); dpg[i].push_back({0, 0}); dpg[i].push_back({N + 1, 0}); } for (int x = 3; x < sz(grid) - 1; ++x) // so i choose the borders { ll c1 = -INF, c2 = -INF; // running variables for case 1 and 2 // TODO: INIT ll ndp = 0, ndpg = 0; dp[x].push_back({0, 0}), dpg[x].push_back({0, 0}); ll y = 1, ny; ll pref0 = 0, pref1 = 0, pref2 = 0, dp0 = 0, dpg1 = 0; auto itpref0 = grid[x - 1].begin(); // idx for pref x-1 auto itpref1 = grid[x].begin(); // idx for pref x auto itpref2 = grid[x + 1].begin(); // idx for pref x+1 auto itdp0 = dp[x - 2].begin(); // idx for dp x-2 auto itdpg1 = dpg[x - 1].begin(); // idx for dpg x-1 while (y <= N) { // update indices ny = INT_MAX; updateIdx(y, ny, itpref0, pref0); updateIdx(y, ny, itpref1, pref1); updateIdx(y, ny, itpref2, pref2); updateIdx(y, ny, itdp0, dp0); updateIdx(y, ny, itdpg1, dpg1); // Case 1 - last tower in x-1 and smaller y c1 = max(c1, dpg1 - pref0 - pref1); ndpg = max(ndpg, pref0 + pref2 + c1); // Case 2 - last tower in x-2 and smaller y c2 = max(c2, dp0 - pref0); ndpg = max(ndpg, pref0 + pref2 + c2); // Case 3 - last tower in x-1 and larger y (or if it is smaller, case 1 performs better) // here the last tower might be larger than the current one ndp = max(ndp, dpm[x - 1] - pref1 + pref2); // Case 4 - Last Tower in x-2 and larger y (or if it is smaller, case 2 performs better) ndpg = max(ndpg, dpm[x - 2] + pref2); // Case 5 - Last Tower in x-3 ndpg = max(ndpg, dpm[x - 3] + pref0 + pref2); // keep track for dpg & dpm ndp = max(ndp, ndpg); dpm[x] = max(dpm[x], ndp); if (ndpg != dpg[x].back().second) dpg[x].push_back({y, ndpg}); if (ndp != dp[x].back().second) dp[x].push_back({y, ndp}); y = ny; } dp[x].push_back({N + 1, dp[x].back().second}); dpg[x].push_back({N + 1, dpg[x].back().second}); } return *max_element(all(dpm)); }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...