Submission #707264

# Submission time Handle Problem Language Result Execution time Memory
707264 2023-03-08T17:36:21 Z Nhoksocqt1 Tropical Garden (IOI11_garden) C++17
69 / 100
5000 ms 61524 KB
#include<bits/stdc++.h>
#include "garden.h"
#include "gardenlib.h"
using namespace std;

#define inf 0x3f3f3f3f
#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#define sz(x) int((x).size())
#define fi first
#define se second
typedef long long ll;
typedef pair<int, int> ii;

template<class X, class Y>
	inline bool maximize(X &x, const Y &y) {return (x < y ? x = y, 1 : 0);}
template<class X, class Y>
	inline bool minimize(X &x, const Y &y) {return (x > y ? x = y, 1 : 0);}

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int Random(int l, int r) {
    return uniform_int_distribution<int>(l, r)(rng);
}

const int MAXN = 150005;

struct Edge {
    int u, v;
} edge[MAXN];

vector<ii> adj[MAXN];
vector<int> adjp[2 * MAXN], comp[2 * MAXN], B[2 * MAXN];
ii a[2 * MAXN], b[2 * MAXN], itOf[2 * MAXN];
int h[2 * MAXN], timeIn[2 * MAXN], timeOut[2 * MAXN], result[2005];
int firstToLoop[2 * MAXN], firstInLoop[2 * MAXN], loopOf[2 * MAXN], posInComp[2 * MAXN];
int deg[2 * MAXN], pa[2 * MAXN], idc[2 * MAXN], idn[2 * MAXN], numNode, numEdge, numQuery, lastNode;
bool dx[2 * MAXN], ok[2 * MAXN];

inline int getLeftNode(int id) {
    return (id >= numEdge) ? edge[id - numEdge].v : edge[id].u;
}

int timeIn0;
void preDfs(int u, int p) {
    timeIn[u] = ++timeIn0;
    if(ok[u])
        B[h[u]].push_back(timeIn[u]);

    for (int it = 0; it < int(adjp[u].size()); ++it) {
        int v(adjp[u][it]);
        if(v != p) {
            h[v] = 1 + h[u];
            preDfs(v, u);
        }
    }

    timeOut[u] = timeIn0;
}

void count_routes(int _N, int _M, int _P, int _R[][2], int _Q, int _G[]) {
    numNode = _N, numEdge = _M, lastNode = _P, numQuery = _Q;
    for (int i = 0; i < _M; ++i) {
        int u(_R[i][0]), v(_R[i][1]);
        edge[i] = {u, v};
        adj[u].push_back({v, i});
        adj[v].push_back({u, i});
    }

    for (int u = 0; u < numNode; ++u) {
        int id0 = adj[u][0].se;
        int id1 = (adj[u].size() > 1 ? adj[u][1].se : 1e9+7);
        bool type0 = (u == edge[adj[u][0].se].v);
        bool type1 = (adj[u].size() > 1 && (u == edge[adj[u][1].se].v));

        for (int it = 0; it < int(adj[u].size()); ++it) {
            int v(adj[u][it].fi), id(adj[u][it].se);
            bool type = !(u == edge[id].v);
            if(it == 0) {
                idn[u] = id + !type * numEdge;
                ok[idn[u]] = 1;
            }

            pa[id + type * numEdge] = (id != id0 || id1 >= 1e9+7) ? id0 + type0 * numEdge : id1 + type1 * numEdge;
            ++deg[pa[id + type * numEdge]];
        }
    }

    int numComp(0);
    for (int id = 0; id < 2 * numEdge; ++id) {
        if(deg[id] || dx[id])
            continue;

        vector<int> tmpn;
        int tmp(id);
        while(!dx[tmp]) {
            dx[tmp] = 1;
            tmpn.push_back(tmp);
            tmp = pa[tmp];
        }

        int szn(tmpn.size());
        for (int it = 0; it <= szn; ++it) {
            if(it == szn || tmpn[it] == tmp) {
                if(it < szn) {
                    for (int jt = it; jt < szn; ++jt) {
                        posInComp[tmpn[jt]] = jt - it;
                        comp[numComp].push_back(tmpn[jt]);
                        firstInLoop[tmpn[jt]] = tmpn[jt];
                        loopOf[tmpn[jt]] = szn - it;
                        firstToLoop[tmpn[jt]] = 0;
                        idc[tmpn[jt]] = numComp;
                    }

                    ++numComp;
                }

                if(it > 0) {
                    adjp[tmp].push_back(tmpn[it - 1]);
                    for (int jt = 0; jt < it; ++jt) {
                        posInComp[tmpn[jt]] = jt;
                        comp[numComp].push_back(tmpn[jt]);
                        firstToLoop[tmpn[jt]] = it - jt + firstToLoop[tmp];
                        firstInLoop[tmpn[jt]] = firstInLoop[tmp];
                        idc[tmpn[jt]] = numComp;
                        if(jt + 1 < it)
                            adjp[tmpn[jt + 1]].push_back(tmpn[jt]);
                    }

                    ++numComp;
                }

                break;
            }
        }
    }

    for (int id = 0; id < 2 * numEdge; ++id) {
        if(!deg[id] || dx[id])
            continue;

        int tmp(id);
        while(!dx[tmp]) {
            dx[tmp] = 1;
            posInComp[tmp] = comp[numComp].size();
            comp[numComp].push_back(tmp);
            idc[tmp] = numComp;
            firstToLoop[tmp] = 0;
            firstInLoop[tmp] = tmp;
            tmp = pa[tmp];
        }

        int szn(comp[numComp].size());
        for (int it = 0; it < szn; ++it)
            loopOf[comp[numComp][it]] = szn;

        ++numComp;
    }

    for (int id = 0; id < 2 * numEdge; ++id) {
        if(!timeIn[id])
            preDfs(id, -1);

        /*cout << id << ": ";
        for (int it = 0; it < int(adjp[id].size()); ++it)
            cout << adjp[id][it] << ' ';
        cout << '\n';*/
        //cout << id << ' ' << firstToLoop[id] << '\n';
        a[id] = {timeIn[id], id};
        b[id] = {timeOut[id], id};
    }

    sort(a, a + 2 * numEdge);
    sort(b, b + 2 * numEdge);

    for (int itn = 0; itn < 2 * numEdge; ++itn) {
        int id(a[itn].se);
        if(adjp[id].size() == 0 || getLeftNode(id) != lastNode)
            continue;

        for (int t = 0; t < numQuery; ++t) {
            int K(_G[t]);
            if(h[id] + K > 2 * numEdge)
                continue;

            h[id] += K;
            int szB(B[h[id]].size());
            while(itOf[h[id]].fi < szB && B[h[id]][itOf[h[id]].fi] <= timeOut[id])
                ++itOf[h[id]].fi;

            result[t] += itOf[h[id]].fi;
            //cout << t << ' ' << id << ' ' << itOf[h[id]].fi << '\n';
            h[id] -= K;
        }
    }

    for (int itn = 0; itn < 2 * numEdge; ++itn) {
        int id(b[itn].se);
        if(adjp[id].size() == 0 || getLeftNode(id) != lastNode)
            continue;

        for (int t = 0; t < numQuery; ++t) {
            int K(_G[t]);
            if(h[id] + K > 2 * numEdge)
                continue;

            h[id] += K;
            int szB(B[h[id]].size());
            while(itOf[h[id]].se < szB && B[h[id]][itOf[h[id]].se] < timeIn[id])
                ++itOf[h[id]].se;

            result[t] -= itOf[h[id]].se;
            //cout << t << ' ' << id << ' ' << itOf[h[id]].se << '\n';
            h[id] -= K;
        }
    }

    for (int t = 0; t < numQuery; ++t) {
        int K(_G[t]), cnt(result[t]);
        for (int u = 0; u < numNode; ++u) {
            if(firstToLoop[idn[u]] >= K)
                continue;

            int id(firstInLoop[idn[u]]), posn = (posInComp[id] + K - firstToLoop[idn[u]]) % loopOf[id];
            cnt += (getLeftNode(comp[idc[id]][posn]) == lastNode);
        }

        answer(cnt);
        //cout << cnt << '\n';
    }
}

Compilation message

garden.cpp:8: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    8 | #pragma GCC optimization ("O3")
      | 
garden.cpp:9: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    9 | #pragma GCC optimization ("unroll-loops")
      | 
garden.cpp: In function 'void count_routes(int, int, int, int (*)[2], int, int*)':
garden.cpp:77:17: warning: unused variable 'v' [-Wunused-variable]
   77 |             int v(adj[u][it].fi), id(adj[u][it].se);
      |                 ^
# Verdict Execution time Memory Grader output
1 Correct 14 ms 25300 KB Output is correct
2 Correct 12 ms 25348 KB Output is correct
3 Correct 13 ms 25300 KB Output is correct
4 Correct 11 ms 25072 KB Output is correct
5 Correct 15 ms 25044 KB Output is correct
6 Correct 16 ms 25680 KB Output is correct
7 Correct 12 ms 25032 KB Output is correct
8 Correct 14 ms 25232 KB Output is correct
9 Correct 19 ms 26848 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 25300 KB Output is correct
2 Correct 12 ms 25348 KB Output is correct
3 Correct 13 ms 25300 KB Output is correct
4 Correct 11 ms 25072 KB Output is correct
5 Correct 15 ms 25044 KB Output is correct
6 Correct 16 ms 25680 KB Output is correct
7 Correct 12 ms 25032 KB Output is correct
8 Correct 14 ms 25232 KB Output is correct
9 Correct 19 ms 26848 KB Output is correct
10 Correct 12 ms 25044 KB Output is correct
11 Correct 31 ms 29768 KB Output is correct
12 Correct 76 ms 36912 KB Output is correct
13 Correct 47 ms 39844 KB Output is correct
14 Correct 265 ms 59724 KB Output is correct
15 Correct 277 ms 60936 KB Output is correct
16 Correct 274 ms 56856 KB Output is correct
17 Correct 219 ms 56188 KB Output is correct
18 Correct 106 ms 38160 KB Output is correct
19 Correct 272 ms 59592 KB Output is correct
20 Correct 300 ms 60920 KB Output is correct
21 Correct 284 ms 57700 KB Output is correct
22 Correct 232 ms 56652 KB Output is correct
23 Correct 275 ms 61320 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 25300 KB Output is correct
2 Correct 12 ms 25348 KB Output is correct
3 Correct 13 ms 25300 KB Output is correct
4 Correct 11 ms 25072 KB Output is correct
5 Correct 15 ms 25044 KB Output is correct
6 Correct 16 ms 25680 KB Output is correct
7 Correct 12 ms 25032 KB Output is correct
8 Correct 14 ms 25232 KB Output is correct
9 Correct 19 ms 26848 KB Output is correct
10 Correct 12 ms 25044 KB Output is correct
11 Correct 31 ms 29768 KB Output is correct
12 Correct 76 ms 36912 KB Output is correct
13 Correct 47 ms 39844 KB Output is correct
14 Correct 265 ms 59724 KB Output is correct
15 Correct 277 ms 60936 KB Output is correct
16 Correct 274 ms 56856 KB Output is correct
17 Correct 219 ms 56188 KB Output is correct
18 Correct 106 ms 38160 KB Output is correct
19 Correct 272 ms 59592 KB Output is correct
20 Correct 300 ms 60920 KB Output is correct
21 Correct 284 ms 57700 KB Output is correct
22 Correct 232 ms 56652 KB Output is correct
23 Correct 275 ms 61320 KB Output is correct
24 Correct 15 ms 25044 KB Output is correct
25 Correct 315 ms 30108 KB Output is correct
26 Correct 525 ms 37572 KB Output is correct
27 Correct 1115 ms 40864 KB Output is correct
28 Correct 2601 ms 59792 KB Output is correct
29 Correct 2775 ms 61016 KB Output is correct
30 Correct 1614 ms 56996 KB Output is correct
31 Correct 1996 ms 56396 KB Output is correct
32 Correct 633 ms 38260 KB Output is correct
33 Correct 2750 ms 59800 KB Output is correct
34 Correct 2696 ms 61300 KB Output is correct
35 Correct 1834 ms 58368 KB Output is correct
36 Correct 2152 ms 56740 KB Output is correct
37 Correct 2576 ms 61524 KB Output is correct
38 Execution timed out 5063 ms 51460 KB Time limit exceeded
39 Halted 0 ms 0 KB -