Submission #703957

# Submission time Handle Problem Language Result Execution time Memory
703957 2023-03-01T06:09:56 Z vjudge1 Olympic Bus (JOI20_ho_t4) C++14
100 / 100
181 ms 4604 KB
#include <bits/stdc++.h>
#pragma GCC optimize ("Ofast", "unroll-loops")
using namespace std;
#define ll long long
// #define int ll
#define FOR(i,a,b) for (int i = (a); i<(b); i++)
#define REP(i,n) FOR(i,0,n)
#define REP1(i,n) FOR(i,1,n+1)
#define RREP(i,n) for (int i=(n)-1; i>=0; i--)
#define f first
#define s second
#define pb push_back
#define ALL(x) x.begin(),x.end()
#define SZ(x) (int)(x.size())
#define SQ(x) (x)*(x)
#define pii pair<int, int>
#define pip pair<int, pii>
#define pdd pair<double ,double>
#define pcc pair<char, char>
#define endl '\n'
//#define TOAD
#ifdef TOAD
#define bug(x) cerr<<__LINE__<<": "<<#x<<" is "<<x<<endl
#define IOS()
#else
#define bug(...)
#define IOS() ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#endif
 
//const ll inf = 1ll<<60;
const int inf=2147483647;
const ll mod = 1e9+7;
const ll maxn=205;
const ll maxm=5e4+5;
const double PI=acos(-1);
 
ll pw(ll x, ll p, ll m=mod){
    ll ret=1;
    while (p>0){
        if (p&1){
            ret*=x;
            ret%=m;
        }
        x*=x;
        x%=m;
        p>>=1;
    }
    return ret;
}
 
ll inv(ll a, ll m=mod){
    return pw(a,m-2,m);
}
struct edge{
    int to, cap, rev;
    int id;
};
struct inedge{
    int u, v, c, d;
    int id;
};
bool operator <(pip a, pip b){
    return a.f<b.f;
}
int n, m;
vector<edge> graph[maxn];
int dis[maxn][4], preev[maxn][4];
int dd[maxn][maxn];
bool occ[maxm][4];
vector<inedge> e(maxm);
vector<int> cores;
void bck(bool typ){
    int cur = cores[typ^1];
    if (dis[cur][typ] == inf) return;
    while(cur != cores[typ]){
        occ[preev[cur][typ]][typ]=1;
        cur=e[preev[cur][typ]].u;
    }
}
void dij(int typ){
    priority_queue<pip, vector<pip>, greater<pip> > pq;
    if (typ%2 == 0) pq.push({0, {1, -1}});
    else pq.push({0, {n, -1}});
    while(pq.size()){
        pip x=pq.top(); pq.pop();
        if (dis[x.s.f][typ] != inf) continue;
        preev[x.s.f][typ] = x.s.s;
        dis[x.s.f][typ] = x.f;
        REP(i, SZ(graph[x.s.f])){
            if (dis[graph[x.s.f][i].to][typ] == inf){
                pq.push({x.f+graph[x.s.f][i].cap, {graph[x.s.f][i].to, graph[x.s.f][i].id}});
            }
        }
    }
    bck(typ);
}
void dij2(int typ, int bn){ // bn is banned index
    dis[cores[typ%2]][typ] = 0;
    REP1(i, n){
        pii cmn = {inf, -1};
        REP1(j, n){
            if (dis[j][typ] < cmn.f && !occ[j][typ]){
                cmn.f=dis[j][typ];
                cmn.s=j;
            }
        }
        if (cmn.s == -1) break;
        occ[cmn.s][typ]=1;
        if (cmn.s == e[bn].v) dis[e[bn].u][typ]=min(dis[e[bn].u][typ], dis[cmn.s][typ]+e[bn].c);
        REP(j, SZ(graph[cmn.s])){
            if (graph[cmn.s][j].id != bn && occ[graph[cmn.s][j].to][typ] == 0){
                dis[graph[cmn.s][j].to][typ] = min(dis[graph[cmn.s][j].to][typ], dis[cmn.s][typ]+graph[cmn.s][j].cap);
            }
        }
    }
}
void floy(){
    REP1(i, n) REP1(j, n) dd[i][j] = ((i==j)?0:inf);
    REP(i, m){
        dd[e[i].u][e[i].v]=min(dd[e[i].u][e[i].v], e[i].c);
    }
    REP1(k, n){
        REP1(i, n){
            REP1(j, n){
                if (dd[i][k] == inf || dd[k][j] == inf) continue;
                dd[i][j] = min(dd[i][j], dd[i][k]+dd[k][j]);
            }
        }
    }
}
int ret;
void solve(){
    cores={1, n};
    floy();
    dij(0);
    dij(1);
    if (dd[1][n] == inf || dd[n][1] == inf) ret=inf;
    else ret = dd[1][n]+dd[n][1];
    REP(i, m){
        int m0, m1;
        if (!occ[i][0] && !occ[i][1]){
            m0 = dd[1][n];
            if (dd[1][e[i].v] != inf && dd[e[i].u][n] != inf) m0=min(m0, dd[1][e[i].v]+e[i].c+dd[e[i].u][n]);
            m1 = dd[n][1];
            if (dd[n][e[i].v] != inf && dd[e[i].u][1] != inf) m1=min(m1, dd[n][e[i].v]+e[i].c+dd[e[i].u][1]);
            if (m0!=inf && m1!=inf) ret = min(ret, m0+m1+e[i].d);
            continue;
        }
        REP1(j, n){
            dis[j][2]=dis[j][3]=inf;
            occ[j][2] = occ[j][3] = 0;
        }
        dij2(2, i);
        dij2(3, i);
        if (dis[n][2]!=inf && dis[1][3]!=inf) ret = min(ret, e[i].d+dis[n][2]+dis[1][3]);
    }
    if (ret>=inf) ret=-1;
}
signed main (){
    IOS();
    cin>>n>>m;
    REP1(i, n){
        dis[i][0]=dis[i][1]=inf;
    }
    REP(i, m){
        cin>>e[i].u>>e[i].v>>e[i].c>>e[i].d;
        e[i].id=i;
        graph[e[i].u].pb({e[i].v, e[i].c, e[i].d, i});
    }
    solve();
    cout<<ret<<endl;
}
# Verdict Execution time Memory Grader output
1 Correct 11 ms 1540 KB Output is correct
2 Correct 1 ms 1492 KB Output is correct
3 Correct 10 ms 1492 KB Output is correct
4 Correct 10 ms 1492 KB Output is correct
5 Correct 2 ms 1364 KB Output is correct
6 Correct 2 ms 1492 KB Output is correct
7 Correct 1 ms 1236 KB Output is correct
8 Correct 2 ms 1236 KB Output is correct
9 Correct 2 ms 1364 KB Output is correct
10 Correct 42 ms 1540 KB Output is correct
11 Correct 45 ms 1492 KB Output is correct
12 Correct 38 ms 1544 KB Output is correct
13 Correct 5 ms 1496 KB Output is correct
14 Correct 6 ms 1492 KB Output is correct
15 Correct 6 ms 1544 KB Output is correct
16 Correct 7 ms 1464 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 46 ms 4472 KB Output is correct
2 Correct 47 ms 4384 KB Output is correct
3 Correct 40 ms 4584 KB Output is correct
4 Correct 8 ms 1508 KB Output is correct
5 Correct 6 ms 1492 KB Output is correct
6 Correct 2 ms 1464 KB Output is correct
7 Correct 2 ms 1492 KB Output is correct
8 Correct 1 ms 1332 KB Output is correct
9 Correct 27 ms 4172 KB Output is correct
10 Correct 26 ms 4084 KB Output is correct
11 Correct 41 ms 4440 KB Output is correct
12 Correct 48 ms 4440 KB Output is correct
13 Correct 45 ms 4604 KB Output is correct
14 Correct 32 ms 4572 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 1472 KB Output is correct
2 Correct 2 ms 1492 KB Output is correct
3 Correct 35 ms 3428 KB Output is correct
4 Correct 2 ms 1492 KB Output is correct
5 Correct 40 ms 3972 KB Output is correct
6 Correct 1 ms 1236 KB Output is correct
7 Correct 1 ms 1336 KB Output is correct
8 Correct 40 ms 3828 KB Output is correct
9 Correct 34 ms 3788 KB Output is correct
10 Correct 33 ms 3996 KB Output is correct
11 Correct 36 ms 3948 KB Output is correct
12 Correct 35 ms 4024 KB Output is correct
13 Correct 1 ms 1324 KB Output is correct
14 Correct 1 ms 1328 KB Output is correct
15 Correct 1 ms 1236 KB Output is correct
16 Correct 1 ms 1324 KB Output is correct
17 Correct 1 ms 1236 KB Output is correct
18 Correct 1 ms 1236 KB Output is correct
19 Correct 37 ms 4080 KB Output is correct
20 Correct 36 ms 3964 KB Output is correct
21 Correct 31 ms 4020 KB Output is correct
22 Correct 30 ms 3908 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 1540 KB Output is correct
2 Correct 1 ms 1492 KB Output is correct
3 Correct 10 ms 1492 KB Output is correct
4 Correct 10 ms 1492 KB Output is correct
5 Correct 2 ms 1364 KB Output is correct
6 Correct 2 ms 1492 KB Output is correct
7 Correct 1 ms 1236 KB Output is correct
8 Correct 2 ms 1236 KB Output is correct
9 Correct 2 ms 1364 KB Output is correct
10 Correct 42 ms 1540 KB Output is correct
11 Correct 45 ms 1492 KB Output is correct
12 Correct 38 ms 1544 KB Output is correct
13 Correct 5 ms 1496 KB Output is correct
14 Correct 6 ms 1492 KB Output is correct
15 Correct 6 ms 1544 KB Output is correct
16 Correct 7 ms 1464 KB Output is correct
17 Correct 46 ms 4472 KB Output is correct
18 Correct 47 ms 4384 KB Output is correct
19 Correct 40 ms 4584 KB Output is correct
20 Correct 8 ms 1508 KB Output is correct
21 Correct 6 ms 1492 KB Output is correct
22 Correct 2 ms 1464 KB Output is correct
23 Correct 2 ms 1492 KB Output is correct
24 Correct 1 ms 1332 KB Output is correct
25 Correct 27 ms 4172 KB Output is correct
26 Correct 26 ms 4084 KB Output is correct
27 Correct 41 ms 4440 KB Output is correct
28 Correct 48 ms 4440 KB Output is correct
29 Correct 45 ms 4604 KB Output is correct
30 Correct 32 ms 4572 KB Output is correct
31 Correct 10 ms 1472 KB Output is correct
32 Correct 2 ms 1492 KB Output is correct
33 Correct 35 ms 3428 KB Output is correct
34 Correct 2 ms 1492 KB Output is correct
35 Correct 40 ms 3972 KB Output is correct
36 Correct 1 ms 1236 KB Output is correct
37 Correct 1 ms 1336 KB Output is correct
38 Correct 40 ms 3828 KB Output is correct
39 Correct 34 ms 3788 KB Output is correct
40 Correct 33 ms 3996 KB Output is correct
41 Correct 36 ms 3948 KB Output is correct
42 Correct 35 ms 4024 KB Output is correct
43 Correct 1 ms 1324 KB Output is correct
44 Correct 1 ms 1328 KB Output is correct
45 Correct 1 ms 1236 KB Output is correct
46 Correct 1 ms 1324 KB Output is correct
47 Correct 1 ms 1236 KB Output is correct
48 Correct 1 ms 1236 KB Output is correct
49 Correct 37 ms 4080 KB Output is correct
50 Correct 36 ms 3964 KB Output is correct
51 Correct 31 ms 4020 KB Output is correct
52 Correct 30 ms 3908 KB Output is correct
53 Correct 43 ms 4400 KB Output is correct
54 Correct 47 ms 4392 KB Output is correct
55 Correct 43 ms 4372 KB Output is correct
56 Correct 8 ms 1492 KB Output is correct
57 Correct 8 ms 1548 KB Output is correct
58 Correct 124 ms 3764 KB Output is correct
59 Correct 148 ms 3660 KB Output is correct
60 Correct 181 ms 3800 KB Output is correct
61 Correct 144 ms 3756 KB Output is correct
62 Correct 137 ms 3736 KB Output is correct
63 Correct 181 ms 3736 KB Output is correct
64 Correct 108 ms 3852 KB Output is correct
65 Correct 86 ms 3896 KB Output is correct
66 Correct 103 ms 3920 KB Output is correct
67 Correct 20 ms 4004 KB Output is correct
68 Correct 28 ms 4172 KB Output is correct
69 Correct 37 ms 4104 KB Output is correct
70 Correct 41 ms 4380 KB Output is correct
71 Correct 38 ms 4404 KB Output is correct
72 Correct 33 ms 4496 KB Output is correct
73 Correct 34 ms 4496 KB Output is correct
74 Correct 37 ms 4336 KB Output is correct