Submission #703171

# Submission time Handle Problem Language Result Execution time Memory
703171 2023-02-26T10:37:54 Z Cyanmond Dynamic Diameter (CEOI19_diameter) C++17
49 / 100
5000 ms 165000 KB
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using i64 = long long;
struct Edge {
    int to;
    i64 w;
};

using T = std::pair<i64, int>;
T op(const T& a, const T& b) {
    return std::max(a, b);
}
T e() {
    return {0, 0};
}
using U = i64;
T map(i64 a, const T& b) {
    return {b.first + a, b.second};
}
i64 composite(i64 a, i64 b) {
    return a + b;
}
i64 id() {
    return 0;
}

class lazySegtree {
    int n, logn, size;
    std::vector<T> node;
    std::vector<U> lazy;

    void update(int i) {
        node[i] = op(node[2 * i], node[2 * i + 1]);
    }

    void all_apply(int i, U f) {
        node[i] = map(f, node[i]);
        if (i < size) lazy[i] = composite(f, lazy[i]);
    }

    void push(int i) {
        all_apply(2 * i, lazy[i]);
        all_apply(2 * i + 1, lazy[i]);
        lazy[i] = id();
    }

    public:
    lazySegtree() {}

    lazySegtree(std::vector<T> initVec) {
        n = (int)initVec.size();
        logn = 0;
        while ((1 << logn) < n) {
            ++logn;
        }
        size = 1 << logn;
        node.assign(2 * size, e());
        lazy.assign(size, id());
        std::copy(initVec.begin(), initVec.end(), node.begin() + size);
        for (int i = size - 1; i >= 1; --i) {
            update(i);
        }
    }

    void apply(int l, int r, U f) {
        l += size, r += size;
        for (int d = logn; d >= 1; --d) {
            if (((l >> d) << d) != l) push(l >> d);
            if (((r >> d) << d) != r) push((r - 1) >> d);
        }
        int l2 = l, r2 = r;
        while (l < r) {
            if (l & 1) all_apply(l++, f);
            if (r & 1) all_apply(--r, f);
            l /= 2;
            r /= 2;
        }
        l = l2, r = r2;
        for (int d = 1; d <= logn; ++d) {
            if (((l >> d) << d) != l) update(l >> d);
            if (((r >> d) << d) != r) update((r - 1) >> d);
        }
    }

    T fold(int l, int r) {
        l += size, r += size;
        for (int d = logn; d >= 1; --d) {
            if (((l >> d) << d) != l) push(l >> d);
            if (((r >> d) << d) != r) push((r - 1) >> d);
        }
        T pl = e(), pr = e();
        while (l < r) {
            if (l & 1) pl = op(pl, node[l++]);
            if (r & 1) pr = op(node[--r], pr);
            l /= 2;
            r /= 2;
        }
        return op(pl, pr);
    }
};

std::vector<std::vector<Edge>> tree;

struct TreeManager {
    int n;
    std::vector<char> isOn, isCentroid;
    std::vector<int> size, in, out, fe, cen;
    std::vector<int> revIn;
    std::vector<i64> depth;

    TreeManager() {}

    TreeManager(const std::vector<char> &ison, const std::vector<int> &roots) {
        isOn = ison;
        n = tree.size();
        isCentroid.assign(n, false);
        size.assign(n, -1);
        in.assign(n, -1);
        out.assign(n, -1);
        depth.assign(n, 0);
        fe.assign(n, 0);
        cen.assign(n, 0);
        int id = 0;
        for (const int v : roots) {
            dfs1(v, -1);
            int x = findCentroid(v, -1, size[v]);
            dfs2(x, -1, id, 0, -1, x);
        }
        revIn.resize(n);
        for (int i = 0; i < n; ++i) {
            if (in[i] >= 0) {
                revIn[in[i]] = i;
            }
        }
    }

    void dfs1(int v, int p) {
        size[v] = 1;
        for (const auto &[t, w] : tree[v]) {
            if (t == p or (not isOn[t])) {
                continue;
            }
            dfs1(t, v);
            size[v] += size[t];
        }
    }

    int findCentroid(int v, int p, int as) {
        bool isCent = true;
        for (const auto &[t, w] : tree[v]) {
            if (t == p or (not isOn[t])) {
                continue;
            }
            int res = findCentroid(t, v, as);
            if (res != -1) {
                return res;
            }
            if (size[t] > as / 2) {
                isCent = false;
            }
        }
        if ((as - size[v]) > as / 2) {
            isCent = false;
        }
        isCentroid[v] = isCent;
        return isCent ? v : -1;
    }

    void dfs2(int v, int p, int &id, i64 d, int f, int ce) {
        fe[v] = f;
        in[v] = id++;
        cen[v] = ce;
        depth[v] = d;
        size[v] = 1;
        for (const auto &[t, w] : tree[v]) {
            if (t == p or (not isOn[t])) {
                continue;
            }
            dfs2(t, v, id, d + w, (f == -1 ? t : f), ce);
            size[v] += size[t];
        }
        out[v] = id;
    }
};

int main() {
    int N, Q;
    i64 W;
    std::cin >> N >> Q >> W;
    std::vector<int> A(N - 1), B(N - 1);
    std::vector<i64> C(N - 1);
    tree.resize(N);
    for (int i = 0; i < N - 1; ++i) {
        std::cin >> A[i] >> B[i] >> C[i];
        --A[i], --B[i];
        tree[A[i]].push_back({B[i], C[i]});
        tree[B[i]].push_back({A[i], C[i]});
    }

    std::vector<char> isOn(N, true);
    std::vector<int> roots = {0};
    std::vector<TreeManager> managers;
    while (true) {
        TreeManager mng(isOn, roots);
        roots.clear();
        for (int i = 0; i < N; ++i) {
            if (not mng.isCentroid[i]) {
                continue;
            }
            isOn[i] = false;
            for (const auto &[t, w] : tree[i]) {
                if (not isOn[t]) {
                    continue;
                }
                roots.push_back(t);
            }
        }
        managers.push_back(std::move(mng));
        if (std::none_of(isOn.begin(), isOn.end(), [](bool b) {
            return b;
        })) {
            break;
        }
    }
    const int m = (int)managers.size();
    std::vector<lazySegtree> segs(m);
    std::multiset<i64> diameters;
    for (int x = 0; x < m; ++x) {
        auto &mng = managers[x];
        std::vector<std::pair<i64, int>> weighVec(N);
        for (int i = 0; i < N; ++i) {
            if (mng.in[i] == -1) {
                continue;
            }
            weighVec[mng.in[i]].first = mng.depth[i];
        }
        for (int i = 0; i < N; ++i) {
            weighVec[i].second = i;
        }
        segs[x] = lazySegtree(weighVec);

        for (int i = 0; i < N; ++i) {
            if (not mng.isCentroid[i]) {
                continue;
            }
            if (mng.size[i] == 1) {
                continue;
            }
            const int bl = mng.in[i], br = mng.out[i];
            const auto [v, p] = segs[x].fold(bl, br);
            const int l = mng.in[mng.fe[mng.revIn[p]]], r = mng.out[mng.fe[mng.revIn[p]]];
            const auto v2 = std::max(segs[x].fold(bl, l).first, segs[x].fold(r, br).first);
            diameters.insert(v + v2);
        }
    }

    i64 last = 0;
    while (Q--) {
        int d;
        i64 e;
        std::cin >> d >> e;
        i64 i = (last + d) % (N - 1);
        i64 w = (last + e) % W;
        int a = A[i], b = B[i];
        for (int x = 0; x < m; ++x) {
            auto &mng = managers[x];
            if ((not mng.isOn[a]) or (not mng.isOn[b])) {
                break;
            }
            if (mng.depth[a] > mng.depth[b]) {
                std::swap(a, b);
            }
            const int c = mng.cen[a];
            if (mng.size[c] == 1) {
                break;
            }
            const int bl = mng.in[c], br = mng.out[c];
            const auto [v, p] = segs[x].fold(bl, br);
            int l = mng.in[mng.fe[mng.revIn[p]]], r = mng.out[mng.fe[mng.revIn[p]]];
            auto v2 = std::max(segs[x].fold(bl, l).first, segs[x].fold(r, br).first);
            diameters.erase(diameters.find(v + v2));

            segs[x].apply(mng.in[b], mng.out[b], (w - C[i]));
            const auto [v3, p3] = segs[x].fold(bl, br);
            l = mng.in[mng.fe[mng.revIn[p3]]], r = mng.out[mng.fe[mng.revIn[p3]]];
            v2 = std::max(segs[x].fold(bl, l).first, segs[x].fold(r, br).first);
            diameters.insert(v3 + v2);
        }
        C[i] = w;
        last = *diameters.rbegin();
        std::cout << last << std::endl;
    }
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 37 ms 1124 KB Output is correct
20 Correct 41 ms 1108 KB Output is correct
21 Correct 46 ms 1204 KB Output is correct
22 Correct 51 ms 1216 KB Output is correct
23 Correct 63 ms 6000 KB Output is correct
24 Correct 82 ms 6980 KB Output is correct
25 Correct 91 ms 7472 KB Output is correct
26 Correct 101 ms 7684 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 5 ms 212 KB Output is correct
4 Correct 43 ms 444 KB Output is correct
5 Correct 199 ms 724 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 6 ms 340 KB Output is correct
10 Correct 49 ms 492 KB Output is correct
11 Correct 244 ms 780 KB Output is correct
12 Correct 4 ms 1876 KB Output is correct
13 Correct 5 ms 1860 KB Output is correct
14 Correct 10 ms 1924 KB Output is correct
15 Correct 64 ms 1936 KB Output is correct
16 Correct 284 ms 2356 KB Output is correct
17 Correct 101 ms 29760 KB Output is correct
18 Correct 87 ms 29748 KB Output is correct
19 Correct 89 ms 29704 KB Output is correct
20 Correct 152 ms 29812 KB Output is correct
21 Correct 397 ms 30396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 1108 KB Output is correct
2 Correct 66 ms 1144 KB Output is correct
3 Correct 318 ms 1432 KB Output is correct
4 Correct 636 ms 1736 KB Output is correct
5 Correct 37 ms 14660 KB Output is correct
6 Correct 140 ms 14744 KB Output is correct
7 Correct 579 ms 14988 KB Output is correct
8 Correct 1156 ms 15360 KB Output is correct
9 Correct 150 ms 71680 KB Output is correct
10 Correct 307 ms 71692 KB Output is correct
11 Correct 1064 ms 72168 KB Output is correct
12 Correct 2080 ms 72232 KB Output is correct
13 Correct 284 ms 151528 KB Output is correct
14 Correct 476 ms 151668 KB Output is correct
15 Correct 1358 ms 152200 KB Output is correct
16 Correct 2454 ms 152408 KB Output is correct
17 Correct 4862 ms 152580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3623 ms 152112 KB Output is correct
2 Correct 3679 ms 152528 KB Output is correct
3 Correct 3658 ms 144228 KB Output is correct
4 Correct 3725 ms 160952 KB Output is correct
5 Correct 3619 ms 152196 KB Output is correct
6 Correct 3406 ms 150744 KB Output is correct
7 Correct 4949 ms 162868 KB Output is correct
8 Correct 4842 ms 163108 KB Output is correct
9 Correct 4844 ms 163064 KB Output is correct
10 Correct 4830 ms 163084 KB Output is correct
11 Correct 4790 ms 162464 KB Output is correct
12 Correct 4490 ms 160556 KB Output is correct
13 Execution timed out 5058 ms 165000 KB Time limit exceeded
14 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 37 ms 1124 KB Output is correct
20 Correct 41 ms 1108 KB Output is correct
21 Correct 46 ms 1204 KB Output is correct
22 Correct 51 ms 1216 KB Output is correct
23 Correct 63 ms 6000 KB Output is correct
24 Correct 82 ms 6980 KB Output is correct
25 Correct 91 ms 7472 KB Output is correct
26 Correct 101 ms 7684 KB Output is correct
27 Correct 0 ms 212 KB Output is correct
28 Correct 1 ms 212 KB Output is correct
29 Correct 5 ms 212 KB Output is correct
30 Correct 43 ms 444 KB Output is correct
31 Correct 199 ms 724 KB Output is correct
32 Correct 0 ms 212 KB Output is correct
33 Correct 1 ms 340 KB Output is correct
34 Correct 1 ms 340 KB Output is correct
35 Correct 6 ms 340 KB Output is correct
36 Correct 49 ms 492 KB Output is correct
37 Correct 244 ms 780 KB Output is correct
38 Correct 4 ms 1876 KB Output is correct
39 Correct 5 ms 1860 KB Output is correct
40 Correct 10 ms 1924 KB Output is correct
41 Correct 64 ms 1936 KB Output is correct
42 Correct 284 ms 2356 KB Output is correct
43 Correct 101 ms 29760 KB Output is correct
44 Correct 87 ms 29748 KB Output is correct
45 Correct 89 ms 29704 KB Output is correct
46 Correct 152 ms 29812 KB Output is correct
47 Correct 397 ms 30396 KB Output is correct
48 Correct 8 ms 1108 KB Output is correct
49 Correct 66 ms 1144 KB Output is correct
50 Correct 318 ms 1432 KB Output is correct
51 Correct 636 ms 1736 KB Output is correct
52 Correct 37 ms 14660 KB Output is correct
53 Correct 140 ms 14744 KB Output is correct
54 Correct 579 ms 14988 KB Output is correct
55 Correct 1156 ms 15360 KB Output is correct
56 Correct 150 ms 71680 KB Output is correct
57 Correct 307 ms 71692 KB Output is correct
58 Correct 1064 ms 72168 KB Output is correct
59 Correct 2080 ms 72232 KB Output is correct
60 Correct 284 ms 151528 KB Output is correct
61 Correct 476 ms 151668 KB Output is correct
62 Correct 1358 ms 152200 KB Output is correct
63 Correct 2454 ms 152408 KB Output is correct
64 Correct 4862 ms 152580 KB Output is correct
65 Correct 3623 ms 152112 KB Output is correct
66 Correct 3679 ms 152528 KB Output is correct
67 Correct 3658 ms 144228 KB Output is correct
68 Correct 3725 ms 160952 KB Output is correct
69 Correct 3619 ms 152196 KB Output is correct
70 Correct 3406 ms 150744 KB Output is correct
71 Correct 4949 ms 162868 KB Output is correct
72 Correct 4842 ms 163108 KB Output is correct
73 Correct 4844 ms 163064 KB Output is correct
74 Correct 4830 ms 163084 KB Output is correct
75 Correct 4790 ms 162464 KB Output is correct
76 Correct 4490 ms 160556 KB Output is correct
77 Execution timed out 5058 ms 165000 KB Time limit exceeded
78 Halted 0 ms 0 KB -