Submission #703170

# Submission time Handle Problem Language Result Execution time Memory
703170 2023-02-26T10:35:38 Z Cyanmond Dynamic Diameter (CEOI19_diameter) C++17
49 / 100
5000 ms 165760 KB
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using i64 = long long;
struct Edge {
    int to;
    i64 w;
};

using T = std::pair<i64, int>;
T op(T a, T b) {
    return std::max(a, b);
}
T e() {
    return {0, 0};
}
using U = i64;
T map(i64 a, T b) {
    return {b.first + a, b.second};
}
i64 composite(i64 a, i64 b) {
    return a + b;
}
i64 id() {
    return 0;
}

class lazySegtree {
    int n, logn, size;
    std::vector<T> node;
    std::vector<U> lazy;

    void update(int i) {
        node[i] = op(node[2 * i], node[2 * i + 1]);
    }

    void all_apply(int i, U f) {
        node[i] = map(f, node[i]);
        if (i < size) lazy[i] = composite(f, lazy[i]);
    }

    void push(int i) {
        all_apply(2 * i, lazy[i]);
        all_apply(2 * i + 1, lazy[i]);
        lazy[i] = id();
    }

    public:
    lazySegtree() {}

    lazySegtree(std::vector<T> initVec) {
        n = (int)initVec.size();
        logn = 0;
        while ((1 << logn) < n) {
            ++logn;
        }
        size = 1 << logn;
        node.assign(2 * size, e());
        lazy.assign(size, id());
        std::copy(initVec.begin(), initVec.end(), node.begin() + size);
        for (int i = size - 1; i >= 1; --i) {
            update(i);
        }
    }

    void apply(int l, int r, U f) {
        l += size, r += size;
        for (int d = logn; d >= 1; --d) {
            if (((l >> d) << d) != l) push(l >> d);
            if (((r >> d) << d) != r) push((r - 1) >> d);
        }
        int l2 = l, r2 = r;
        while (l < r) {
            if (l & 1) all_apply(l++, f);
            if (r & 1) all_apply(--r, f);
            l /= 2;
            r /= 2;
        }
        l = l2, r = r2;
        for (int d = 1; d <= logn; ++d) {
            if (((l >> d) << d) != l) update(l >> d);
            if (((r >> d) << d) != r) update((r - 1) >> d);
        }
    }

    T fold(int l, int r) {
        l += size, r += size;
        for (int d = logn; d >= 1; --d) {
            if (((l >> d) << d) != l) push(l >> d);
            if (((r >> d) << d) != r) push((r - 1) >> d);
        }
        T pl = e(), pr = e();
        while (l < r) {
            if (l & 1) pl = op(pl, node[l++]);
            if (r & 1) pr = op(node[--r], pr);
            l /= 2;
            r /= 2;
        }
        return op(pl, pr);
    }
};

std::vector<std::vector<Edge>> tree;

struct TreeManager {
    int n;
    std::vector<char> isOn, isCentroid;
    std::vector<int> size, in, out, fe, cen;
    std::vector<int> revIn;
    std::vector<i64> depth;

    TreeManager() {}

    TreeManager(const std::vector<char> &ison, const std::vector<int> &roots) {
        isOn = ison;
        n = tree.size();
        isCentroid.assign(n, false);
        size.assign(n, -1);
        in.assign(n, -1);
        out.assign(n, -1);
        depth.assign(n, 0);
        fe.assign(n, 0);
        cen.assign(n, 0);
        int id = 0;
        for (const int v : roots) {
            dfs1(v, -1);
            int x = findCentroid(v, -1, size[v]);
            dfs2(x, -1, id, 0, -1, x);
        }
        revIn.resize(n);
        for (int i = 0; i < n; ++i) {
            if (in[i] >= 0) {
                revIn[in[i]] = i;
            }
        }
    }

    void dfs1(int v, int p) {
        size[v] = 1;
        for (const auto &[t, w] : tree[v]) {
            if (t == p or (not isOn[t])) {
                continue;
            }
            dfs1(t, v);
            size[v] += size[t];
        }
    }

    int findCentroid(int v, int p, int as) {
        bool isCent = true;
        for (const auto &[t, w] : tree[v]) {
            if (t == p or (not isOn[t])) {
                continue;
            }
            int res = findCentroid(t, v, as);
            if (res != -1) {
                return res;
            }
            if (size[t] > as / 2) {
                isCent = false;
            }
        }
        if ((as - size[v]) > as / 2) {
            isCent = false;
        }
        isCentroid[v] = isCent;
        return isCent ? v : -1;
    }

    void dfs2(int v, int p, int &id, i64 d, int f, int ce) {
        fe[v] = f;
        in[v] = id++;
        cen[v] = ce;
        depth[v] = d;
        size[v] = 1;
        for (const auto &[t, w] : tree[v]) {
            if (t == p or (not isOn[t])) {
                continue;
            }
            dfs2(t, v, id, d + w, (f == -1 ? t : f), ce);
            size[v] += size[t];
        }
        out[v] = id;
    }
};

int main() {
    int N, Q;
    i64 W;
    std::cin >> N >> Q >> W;
    std::vector<int> A(N - 1), B(N - 1);
    std::vector<i64> C(N - 1);
    tree.resize(N);
    for (int i = 0; i < N - 1; ++i) {
        std::cin >> A[i] >> B[i] >> C[i];
        --A[i], --B[i];
        tree[A[i]].push_back({B[i], C[i]});
        tree[B[i]].push_back({A[i], C[i]});
    }

    std::vector<char> isOn(N, true);
    std::vector<int> roots = {0};
    std::vector<TreeManager> managers;
    while (true) {
        TreeManager mng(isOn, roots);
        roots.clear();
        for (int i = 0; i < N; ++i) {
            if (not mng.isCentroid[i]) {
                continue;
            }
            isOn[i] = false;
            for (const auto &[t, w] : tree[i]) {
                if (not isOn[t]) {
                    continue;
                }
                roots.push_back(t);
            }
        }
        managers.push_back(std::move(mng));
        if (std::none_of(isOn.begin(), isOn.end(), [](bool b) {
            return b;
        })) {
            break;
        }
    }
    const int m = (int)managers.size();
    std::vector<lazySegtree> segs(m);
    std::multiset<i64> diameters;
    for (int x = 0; x < m; ++x) {
        auto &mng = managers[x];
        std::vector<std::pair<i64, int>> weighVec(N);
        for (int i = 0; i < N; ++i) {
            if (mng.in[i] == -1) {
                continue;
            }
            weighVec[mng.in[i]].first = mng.depth[i];
        }
        for (int i = 0; i < N; ++i) {
            weighVec[i].second = i;
        }
        segs[x] = lazySegtree(weighVec);

        for (int i = 0; i < N; ++i) {
            if (not mng.isCentroid[i]) {
                continue;
            }
            if (mng.size[i] == 1) {
                continue;
            }
            const int bl = mng.in[i], br = mng.out[i];
            const auto [v, p] = segs[x].fold(bl, br);
            const int l = mng.in[mng.fe[mng.revIn[p]]], r = mng.out[mng.fe[mng.revIn[p]]];
            const auto v2 = std::max(segs[x].fold(bl, l).first, segs[x].fold(r, br).first);
            diameters.insert(v + v2);
        }
    }

    i64 last = 0;
    while (Q--) {
        int d;
        i64 e;
        std::cin >> d >> e;
        i64 i = (last + d) % (N - 1);
        i64 w = (last + e) % W;
        int a = A[i], b = B[i];
        for (int x = 0; x < m; ++x) {
            auto &mng = managers[x];
            if ((not mng.isOn[a]) or (not mng.isOn[b])) {
                break;
            }
            if (mng.depth[a] > mng.depth[b]) {
                std::swap(a, b);
            }
            const int c = mng.cen[a];
            if (mng.size[c] == 1) {
                break;
            }
            const int bl = mng.in[c], br = mng.out[c];
            const auto [v, p] = segs[x].fold(bl, br);
            int l = mng.in[mng.fe[mng.revIn[p]]], r = mng.out[mng.fe[mng.revIn[p]]];
            auto v2 = std::max(segs[x].fold(bl, l).first, segs[x].fold(r, br).first);
            diameters.erase(diameters.find(v + v2));

            segs[x].apply(mng.in[b], mng.out[b], (w - C[i]));
            const auto [v3, p3] = segs[x].fold(bl, br);
            l = mng.in[mng.fe[mng.revIn[p3]]], r = mng.out[mng.fe[mng.revIn[p3]]];
            v2 = std::max(segs[x].fold(bl, l).first, segs[x].fold(r, br).first);
            diameters.insert(v3 + v2);
        }
        C[i] = w;
        last = *diameters.rbegin();
        std::cout << last << std::endl;
    }
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 300 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 300 KB Output is correct
7 Correct 1 ms 300 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 304 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 300 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 300 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 300 KB Output is correct
7 Correct 1 ms 300 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 304 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 300 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 47 ms 1176 KB Output is correct
20 Correct 41 ms 1180 KB Output is correct
21 Correct 46 ms 1324 KB Output is correct
22 Correct 51 ms 1284 KB Output is correct
23 Correct 66 ms 6112 KB Output is correct
24 Correct 85 ms 7184 KB Output is correct
25 Correct 98 ms 7636 KB Output is correct
26 Correct 97 ms 7780 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 5 ms 212 KB Output is correct
4 Correct 41 ms 468 KB Output is correct
5 Correct 203 ms 1044 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 2 ms 340 KB Output is correct
9 Correct 6 ms 444 KB Output is correct
10 Correct 54 ms 696 KB Output is correct
11 Correct 247 ms 1164 KB Output is correct
12 Correct 5 ms 1876 KB Output is correct
13 Correct 5 ms 1900 KB Output is correct
14 Correct 11 ms 1976 KB Output is correct
15 Correct 61 ms 2176 KB Output is correct
16 Correct 295 ms 2668 KB Output is correct
17 Correct 85 ms 30116 KB Output is correct
18 Correct 85 ms 30208 KB Output is correct
19 Correct 95 ms 30116 KB Output is correct
20 Correct 155 ms 30188 KB Output is correct
21 Correct 403 ms 30732 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 1080 KB Output is correct
2 Correct 66 ms 1220 KB Output is correct
3 Correct 330 ms 1768 KB Output is correct
4 Correct 651 ms 2040 KB Output is correct
5 Correct 39 ms 14740 KB Output is correct
6 Correct 138 ms 14932 KB Output is correct
7 Correct 573 ms 15284 KB Output is correct
8 Correct 1166 ms 15616 KB Output is correct
9 Correct 141 ms 72132 KB Output is correct
10 Correct 305 ms 72236 KB Output is correct
11 Correct 980 ms 72440 KB Output is correct
12 Correct 1867 ms 72640 KB Output is correct
13 Correct 291 ms 151944 KB Output is correct
14 Correct 467 ms 151548 KB Output is correct
15 Correct 1401 ms 152072 KB Output is correct
16 Correct 2381 ms 152128 KB Output is correct
17 Correct 4754 ms 152440 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3576 ms 151996 KB Output is correct
2 Correct 3625 ms 152552 KB Output is correct
3 Correct 3600 ms 144268 KB Output is correct
4 Correct 3687 ms 161008 KB Output is correct
5 Correct 3602 ms 152208 KB Output is correct
6 Correct 3331 ms 150796 KB Output is correct
7 Correct 4811 ms 162848 KB Output is correct
8 Correct 4784 ms 162900 KB Output is correct
9 Correct 4776 ms 163644 KB Output is correct
10 Correct 4853 ms 163552 KB Output is correct
11 Correct 4916 ms 163100 KB Output is correct
12 Correct 4298 ms 161304 KB Output is correct
13 Execution timed out 5059 ms 165760 KB Time limit exceeded
14 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 300 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 300 KB Output is correct
7 Correct 1 ms 300 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 304 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 300 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 47 ms 1176 KB Output is correct
20 Correct 41 ms 1180 KB Output is correct
21 Correct 46 ms 1324 KB Output is correct
22 Correct 51 ms 1284 KB Output is correct
23 Correct 66 ms 6112 KB Output is correct
24 Correct 85 ms 7184 KB Output is correct
25 Correct 98 ms 7636 KB Output is correct
26 Correct 97 ms 7780 KB Output is correct
27 Correct 1 ms 212 KB Output is correct
28 Correct 1 ms 212 KB Output is correct
29 Correct 5 ms 212 KB Output is correct
30 Correct 41 ms 468 KB Output is correct
31 Correct 203 ms 1044 KB Output is correct
32 Correct 1 ms 212 KB Output is correct
33 Correct 1 ms 340 KB Output is correct
34 Correct 2 ms 340 KB Output is correct
35 Correct 6 ms 444 KB Output is correct
36 Correct 54 ms 696 KB Output is correct
37 Correct 247 ms 1164 KB Output is correct
38 Correct 5 ms 1876 KB Output is correct
39 Correct 5 ms 1900 KB Output is correct
40 Correct 11 ms 1976 KB Output is correct
41 Correct 61 ms 2176 KB Output is correct
42 Correct 295 ms 2668 KB Output is correct
43 Correct 85 ms 30116 KB Output is correct
44 Correct 85 ms 30208 KB Output is correct
45 Correct 95 ms 30116 KB Output is correct
46 Correct 155 ms 30188 KB Output is correct
47 Correct 403 ms 30732 KB Output is correct
48 Correct 8 ms 1080 KB Output is correct
49 Correct 66 ms 1220 KB Output is correct
50 Correct 330 ms 1768 KB Output is correct
51 Correct 651 ms 2040 KB Output is correct
52 Correct 39 ms 14740 KB Output is correct
53 Correct 138 ms 14932 KB Output is correct
54 Correct 573 ms 15284 KB Output is correct
55 Correct 1166 ms 15616 KB Output is correct
56 Correct 141 ms 72132 KB Output is correct
57 Correct 305 ms 72236 KB Output is correct
58 Correct 980 ms 72440 KB Output is correct
59 Correct 1867 ms 72640 KB Output is correct
60 Correct 291 ms 151944 KB Output is correct
61 Correct 467 ms 151548 KB Output is correct
62 Correct 1401 ms 152072 KB Output is correct
63 Correct 2381 ms 152128 KB Output is correct
64 Correct 4754 ms 152440 KB Output is correct
65 Correct 3576 ms 151996 KB Output is correct
66 Correct 3625 ms 152552 KB Output is correct
67 Correct 3600 ms 144268 KB Output is correct
68 Correct 3687 ms 161008 KB Output is correct
69 Correct 3602 ms 152208 KB Output is correct
70 Correct 3331 ms 150796 KB Output is correct
71 Correct 4811 ms 162848 KB Output is correct
72 Correct 4784 ms 162900 KB Output is correct
73 Correct 4776 ms 163644 KB Output is correct
74 Correct 4853 ms 163552 KB Output is correct
75 Correct 4916 ms 163100 KB Output is correct
76 Correct 4298 ms 161304 KB Output is correct
77 Execution timed out 5059 ms 165760 KB Time limit exceeded
78 Halted 0 ms 0 KB -