Submission #70192

# Submission time Handle Problem Language Result Execution time Memory
70192 2018-08-22T13:10:12 Z funcsr Koala Game (APIO17_koala) C++17
67 / 100
957 ms 1264 KB
#include "koala.h"
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <cmath>
#include <iomanip>
#include <cassert>
#include <bitset>
using namespace std;

typedef pair<int, int> P;
#define rep(i, n) for (int i=0; i<(n); i++)
#define all(c) (c).begin(), (c).end()
#define uniq(c) c.erase(unique(all(c)), (c).end())
#define index(xs, x) (int)(lower_bound(all(xs), x) - xs.begin())
#define _1 first
#define _2 second
#define pb push_back
#define INF 1145141919
#define MOD 1000000007

int N, W;
tuple<int,int,int> dp[201];
int simulation(vector<int> cost, int l, int r) {
  rep(i, W+1) dp[i] = make_tuple(0, 0, 0);
  rep(i, N) {
    assert(cost[i] > 0);
    for (int j=W-cost[i]; j>=0; j--) {
      dp[j+cost[i]] = max(dp[j+cost[i]], make_tuple(get<0>(dp[j])+(i+1), get<1>(dp[j])+1, get<2>(dp[j])-(l<=i+1&&i+1<=r)));
    }
  }
  int lo = -get<2>(dp[W]);
  rep(i, W+1) dp[i] = make_tuple(0, 0, 0);
  rep(i, N) {
    assert(cost[i] > 0);
    for (int j=W-cost[i]; j>=0; j--) {
      dp[j+cost[i]] = max(dp[j+cost[i]], make_tuple(get<0>(dp[j])+(i+1), get<1>(dp[j])+1, get<2>(dp[j])+(l<=i+1&&i+1<=r)));
    }
  }
  int hi = get<2>(dp[W]);
  assert(lo==hi);
  return lo;
}

int perm[100];
void solve(int l, int r, vector<int> set) {
  assert(r-l+1 == set.size());
  assert(l<=r);
  //cout<<"["<<l<<","<<r<<"] {";for(int x: set)cout<<x<<",";cout<<"}\n";
  if (l == r) {
    perm[set[0]] = l;
    return;
  }
  pair<int, P> mp = make_pair(INF, P(-1, -1));

  for (int outside=1; outside<=100; outside++) {
    for (int k=2; k<=100; k++) {
      if ((outside-1)*(N-(r-l+1)) + (k-1)*(r-l+1) > W) continue;
      vector<int> cost(N);
      for (int i=1; i<=N; i++) {
        if (l <= i && i <= r) cost[i-1] = k;
        else cost[i-1] = outside;
      }
      int left = simulation(cost, l, r);
      int right = (r-l+1)-left;
      if (left==0||right==0)continue;
      mp = min(mp, make_pair(abs(left-right), P(k, outside)));
      if (mp._1 == 0) break;
    }
    if (mp._1 == 0) break;
  }
  int val = mp._2._1;
  int outside = mp._2._2;
  //cout<<"val="<<val<<", outside="<<outside<<": "<<mp._1<<"\n";
  assert(val!=-1);

  int B[100], R[100];
  rep(i, N) B[i] = outside-1;
  for (int i : set) B[i] = val-1;
  playRound(B, R);
  vector<int> left, right;
  for (int i : set) {
    if (R[i] >= val) right.pb(i);
    else left.pb(i);
  }

  solve(l, l+left.size()-1, left);
  solve(l+left.size(), r, right);
}
int solve2(int l, int r, vector<int> set) {
  assert(r-l+1 == set.size());
  assert(l<=r);
  //cout<<"["<<l<<","<<r<<"] {";for(int x: set)cout<<x<<",";cout<<"}\n";
  if (l == r) return l;
  pair<int, P> mp = make_pair(INF, P(-1, -1));

  for (int outside=1; outside<=100; outside++) {
    for (int k=2; k<=100; k++) {
      if ((outside-1)*(N-(r-l+1)) + (k-1)*(r-l+1) > W) continue;
      vector<int> cost(N);
      for (int i=1; i<=N; i++) {
        if (l <= i && i <= r) cost[i-1] = k;
        else cost[i-1] = outside;
      }
      int left = simulation(cost, l, r);
      int right = (r-l+1)-left;
      if (right==0)continue;
      mp = min(mp, make_pair(right, P(k, outside)));
      if (mp._1 == 0) break;
    }
    if (mp._1 == 0) break;
  }
  int val = mp._2._1;
  int outside = mp._2._2;
  //cout<<"val="<<val<<", outside="<<outside<<": "<<mp._1<<"\n";
  assert(val!=-1);

  int B[100], R[100];
  rep(i, N) B[i] = outside-1;
  for (int i : set) B[i] = val-1;
  playRound(B, R);
  vector<int> left, right;
  for (int i : set) {
    if (R[i] >= val) right.pb(i);
    else left.pb(i);
  }
  return solve2(l+left.size(), r, right);
}

int minValue(int N, int W) {
  int B[N], R[N];
  rep(i, N) B[i] = 0;
  B[0] = 1;
  playRound(B, R);
  rep(i, N) if (R[i] <= B[i]) return i;
  abort();
}

int maxValue(int NN, int WW) {
  N = NN, W = WW;
  vector<int> left, right;
  rep(i, N) perm[i] = -1;
  vector<int> all;
  rep(i, N) all.pb(i);
  return solve2(1, N, all);
}

int greaterValue(int N, int W) {
  return 0;
}


void allValues(int NN, int WW, int *P) {
  N = NN, W = WW;
  vector<int> left, right;
  rep(i, N) perm[i] = -1;
  vector<int> all;
  rep(i, N) all.pb(i);
  solve(1, N, all);
  rep(i, N) P[i] = perm[i];
}

Compilation message

In file included from /usr/include/c++/7/cassert:44:0,
                 from koala.cpp:13:
koala.cpp: In function 'void solve(int, int, std::vector<int>)':
koala.cpp:53:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   assert(r-l+1 == set.size());
          ~~~~~~^~~~~~~~~~~~~
koala.cpp: In function 'int solve2(int, int, std::vector<int>)':
koala.cpp:97:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   assert(r-l+1 == set.size());
          ~~~~~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 9 ms 376 KB Output is correct
2 Correct 8 ms 516 KB Output is correct
3 Correct 9 ms 616 KB Output is correct
4 Correct 9 ms 616 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 22 ms 640 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 3 ms 704 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 839 ms 728 KB Output is correct
2 Correct 871 ms 844 KB Output is correct
3 Correct 839 ms 976 KB Output is correct
4 Correct 795 ms 1012 KB Output is correct
5 Correct 740 ms 1012 KB Output is correct
6 Correct 957 ms 1012 KB Output is correct
7 Correct 763 ms 1012 KB Output is correct
8 Correct 829 ms 1012 KB Output is correct
9 Correct 800 ms 1012 KB Output is correct
10 Correct 761 ms 1012 KB Output is correct
11 Correct 855 ms 1012 KB Output is correct
12 Correct 813 ms 1012 KB Output is correct
13 Correct 780 ms 1012 KB Output is correct
14 Correct 905 ms 1012 KB Output is correct
15 Correct 934 ms 1264 KB Output is correct
16 Correct 748 ms 1264 KB Output is correct
17 Correct 853 ms 1264 KB Output is correct
18 Correct 784 ms 1264 KB Output is correct
19 Correct 821 ms 1264 KB Output is correct
20 Correct 795 ms 1264 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 97 ms 1264 KB Output is correct
2 Correct 96 ms 1264 KB Output is correct
3 Correct 131 ms 1264 KB Output is correct
4 Correct 124 ms 1264 KB Output is correct
5 Correct 92 ms 1264 KB Output is correct
6 Correct 99 ms 1264 KB Output is correct
7 Correct 103 ms 1264 KB Output is correct
8 Correct 91 ms 1264 KB Output is correct
9 Correct 92 ms 1264 KB Output is correct
10 Correct 96 ms 1264 KB Output is correct
11 Correct 122 ms 1264 KB Output is correct
12 Correct 94 ms 1264 KB Output is correct
13 Correct 98 ms 1264 KB Output is correct
14 Correct 93 ms 1264 KB Output is correct
15 Correct 87 ms 1264 KB Output is correct
16 Correct 154 ms 1264 KB Output is correct
17 Correct 99 ms 1264 KB Output is correct
18 Correct 101 ms 1264 KB Output is correct
19 Correct 100 ms 1264 KB Output is correct
20 Correct 88 ms 1264 KB Output is correct
21 Correct 92 ms 1264 KB Output is correct
22 Correct 97 ms 1264 KB Output is correct
23 Correct 130 ms 1264 KB Output is correct
24 Correct 94 ms 1264 KB Output is correct
25 Correct 102 ms 1264 KB Output is correct
26 Correct 91 ms 1264 KB Output is correct
27 Correct 83 ms 1264 KB Output is correct
28 Correct 88 ms 1264 KB Output is correct
29 Correct 120 ms 1264 KB Output is correct
30 Correct 84 ms 1264 KB Output is correct
31 Correct 85 ms 1264 KB Output is correct
32 Correct 95 ms 1264 KB Output is correct
33 Correct 94 ms 1264 KB Output is correct
34 Correct 89 ms 1264 KB Output is correct
35 Correct 97 ms 1264 KB Output is correct
36 Correct 99 ms 1264 KB Output is correct
37 Correct 97 ms 1264 KB Output is correct
38 Correct 95 ms 1264 KB Output is correct
39 Correct 92 ms 1264 KB Output is correct
40 Correct 91 ms 1264 KB Output is correct