Submission #701296

# Submission time Handle Problem Language Result Execution time Memory
701296 2023-02-20T19:44:55 Z Abrar_Al_Samit Koala Game (APIO17_koala) C++17
100 / 100
48 ms 348 KB
#include "koala.h"
#include<bits/stdc++.h>

using namespace std;

int lim[101];
int minValue(int N, int W) {
    int B[N], R[N];
    for(int i=0; i<N; ++i) {
        B[i] = R[i] = 0;
    }
    B[0] = 1;
    playRound(B, R);

    if(R[0]<=1) {
        return 0;
    }
    for(int i=1; i<N; ++i) {
        if(R[i]==0) return i;
    }
}

int maxValue(int N, int W) {
    int B[N] = {0}, R[N] = {0};

    set<int>s;
    for(int i=0; i<N; ++i) {
        s.insert(i);
    }

    while(s.size()>1) {
        int val = W / s.size();

        memset(B, 0, sizeof B);
        memset(R, 0, sizeof R);

        for(int x : s) {
            B[x] = val;
        }
        playRound(B, R);

        set<int>new_s;
        for(int i=0; i<N; ++i) if(R[i]>B[i]) {
            if(s.count(i)) new_s.insert(i);
        }
        s = new_s;
    }
    return *s.begin();    
}

int greaterValue(int N, int W) {
    int B[N] = {0}, R[N] = {0};

    int l = 1, r = 13;

    while(l<r) {
        int mid = (l+r)/2;

        B[0] = B[1] = mid;
        playRound(B, R);

        if(B[0]<R[0] && B[1]<R[1]) {
            l = mid+1;
        } else if(B[0]>=R[0] && B[1]>=R[1]) {
            r = mid-1;
        } else {
            if(R[0]>B[0]) return 0;
            return 1;            
        }
    }
}

void solve(set<int>s, int *P, int mx, int N, int W) {
    if(s.size()==1) {
        P[*s.begin()] = mx;
        return;
    }
    int B[N] = {0}, R[N] = {0};
    int val = W / s.size();
    val = min(val, lim[mx]);

    for(int j : s) {
        B[j] = val;
    }
    playRound(B, R);

    set<int>bigger;
    for(int j : s) {
        if(R[j]>B[j]) {
            bigger.insert(j);
        }
    }
    for(int x : bigger) {
        s.erase(x);
    }

    solve(bigger, P, mx, N, W);
    mx -= bigger.size();
    solve(s, P, mx, N, W);
}
bool cmp(int i, int j) {
    int B[100] = {0}, R[100] = {0};

    B[i] = B[j] = 100;
    playRound(B, R);

    if(R[i]>B[i]) return false;
    return true;
}

// void m_sort(vector<int>&order, int l, int r) {
//     if(l==r) return;

//     int m = (r-l+1)/2;
//     m_sort(order, l, l+m), m_sort(order, l+m+1, r);

//     vector<int>t1, t2;
//     for(int i=l; i<=l+m; ++i) t1.push_back(order[i]);
//     for(int i=l+m+1; i<=r; ++i) t2.push_back(order[i]);

//     reverse(t1.begin(), t1.end());
//     reverse(t2.begin(), t2.end());

//     int p = l;
//     while(!t1.empty() || !t2.empty()) {
//         if(t1.empty()) {
//             order[p] = t2.back();
//             t2.pop_back(); 
//             ++p;
//         } else if(t2.empty()) {
//             order[p] = t1.back();
//             t1.pop_back();
//             ++p;
//         } else {
//             if(cmp(t1.back(), t2.back())) {
//                 order[p] = t1.back();
//                 t1.pop_back();
//                 ++p;
//             } else {
//                 order[p] = t2.back();
//                 t2.pop_back();
//                 ++p;
//             }
//         }
//     }
// }

void merge(int arr[], int p, int q, int r) {
  
  // Create L ← A[p..q] and M ← A[q+1..r]
  int n1 = q - p + 1;
  int n2 = r - q;

  int L[n1], M[n2];

  for (int i = 0; i < n1; i++)
    L[i] = arr[p + i];
  for (int j = 0; j < n2; j++)
    M[j] = arr[q + 1 + j];

  // Maintain current index of sub-arrays and main array
  int i, j, k;
  i = 0;
  j = 0;
  k = p;

  // Until we reach either end of either L or M, pick larger among
  // elements L and M and place them in the correct position at A[p..r]
  while (i < n1 && j < n2) {
    if (cmp(L[i], M[j])) {
      arr[k] = L[i];
      i++;
    } else {
      arr[k] = M[j];
      j++;
    }
    k++;
  }

  // When we run out of elements in either L or M,
  // pick up the remaining elements and put in A[p..r]
  while (i < n1) {
    arr[k] = L[i];
    i++;
    k++;
  }

  while (j < n2) {
    arr[k] = M[j];
    j++;
    k++;
  }
}

// Divide the array into two subarrays, sort them and merge them
void mergeSort(int arr[], int l, int r) {
  if (l < r) {
    // m is the point where the array is divided into two subarrays
    int m = l + (r - l) / 2;

    mergeSort(arr, l, m);
    mergeSort(arr, m + 1, r);

    // Merge the sorted subarrays
    merge(arr, l, m, r);
  }
}
void allValues(int N, int W, int *P) {
    if (W == 2*N) {
        int order[N];
        iota(order, order+N, 0);

        mergeSort(order, 0, N-1);
        for(int i=0; i<N; ++i) {
            P[order[i]] = i+1;
        }
    } else {
        int S = 0;
        for(int i=1, cur=1; i<=N; ++i) {
            if(i>S) S += cur, ++cur;
            lim[i] = cur-2;
        }

        set<int>s;
        for(int i=0; i<N; ++i) {
            s.insert(i);
        }
        solve(s, P, N, N, W);
    }
}

Compilation message

koala.cpp: In function 'int minValue(int, int)':
koala.cpp:21:1: warning: control reaches end of non-void function [-Wreturn-type]
   21 | }
      | ^
koala.cpp: In function 'int greaterValue(int, int)':
koala.cpp:71:1: warning: control reaches end of non-void function [-Wreturn-type]
   71 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 4 ms 208 KB Output is correct
2 Correct 4 ms 208 KB Output is correct
3 Correct 3 ms 208 KB Output is correct
4 Correct 4 ms 316 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 13 ms 320 KB Output is correct
2 Correct 13 ms 208 KB Output is correct
3 Correct 13 ms 208 KB Output is correct
4 Correct 12 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 324 KB Output is correct
2 Correct 48 ms 336 KB Output is correct
3 Correct 43 ms 328 KB Output is correct
4 Correct 44 ms 324 KB Output is correct
5 Correct 40 ms 336 KB Output is correct
6 Correct 40 ms 324 KB Output is correct
7 Correct 44 ms 336 KB Output is correct
8 Correct 46 ms 336 KB Output is correct
9 Correct 44 ms 332 KB Output is correct
10 Correct 42 ms 324 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 208 KB Output is correct
2 Correct 28 ms 208 KB Output is correct
3 Correct 28 ms 208 KB Output is correct
4 Correct 27 ms 308 KB Output is correct
5 Correct 27 ms 208 KB Output is correct
6 Correct 27 ms 208 KB Output is correct
7 Correct 27 ms 208 KB Output is correct
8 Correct 26 ms 208 KB Output is correct
9 Correct 28 ms 320 KB Output is correct
10 Correct 26 ms 308 KB Output is correct
11 Correct 28 ms 312 KB Output is correct
12 Correct 16 ms 316 KB Output is correct
13 Correct 27 ms 312 KB Output is correct
14 Correct 25 ms 316 KB Output is correct
15 Correct 24 ms 316 KB Output is correct
16 Correct 23 ms 208 KB Output is correct
17 Correct 27 ms 208 KB Output is correct
18 Correct 26 ms 336 KB Output is correct
19 Correct 25 ms 208 KB Output is correct
20 Correct 24 ms 308 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 336 KB Output is correct
2 Correct 3 ms 336 KB Output is correct
3 Correct 3 ms 336 KB Output is correct
4 Correct 3 ms 336 KB Output is correct
5 Correct 3 ms 336 KB Output is correct
6 Correct 3 ms 336 KB Output is correct
7 Correct 3 ms 340 KB Output is correct
8 Correct 3 ms 336 KB Output is correct
9 Correct 3 ms 336 KB Output is correct
10 Correct 3 ms 336 KB Output is correct
11 Correct 3 ms 336 KB Output is correct
12 Correct 3 ms 336 KB Output is correct
13 Correct 3 ms 348 KB Output is correct
14 Correct 3 ms 336 KB Output is correct
15 Correct 3 ms 336 KB Output is correct
16 Correct 3 ms 336 KB Output is correct
17 Correct 3 ms 336 KB Output is correct
18 Correct 3 ms 336 KB Output is correct
19 Correct 3 ms 336 KB Output is correct
20 Correct 3 ms 336 KB Output is correct
21 Correct 3 ms 336 KB Output is correct
22 Correct 3 ms 336 KB Output is correct
23 Correct 3 ms 336 KB Output is correct
24 Correct 4 ms 344 KB Output is correct
25 Correct 3 ms 336 KB Output is correct
26 Correct 3 ms 336 KB Output is correct
27 Correct 3 ms 336 KB Output is correct
28 Correct 3 ms 336 KB Output is correct
29 Correct 3 ms 336 KB Output is correct
30 Correct 3 ms 344 KB Output is correct
31 Correct 3 ms 336 KB Output is correct
32 Correct 3 ms 336 KB Output is correct
33 Correct 3 ms 348 KB Output is correct
34 Correct 3 ms 336 KB Output is correct
35 Correct 3 ms 336 KB Output is correct
36 Correct 3 ms 340 KB Output is correct
37 Correct 3 ms 336 KB Output is correct
38 Correct 3 ms 336 KB Output is correct
39 Correct 4 ms 336 KB Output is correct
40 Correct 3 ms 336 KB Output is correct