Submission #69871

# Submission time Handle Problem Language Result Execution time Memory
69871 2018-08-21T17:56:35 Z Benq Sparklers (JOI17_sparklers) C++14
100 / 100
210 ms 31120 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")

#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)

#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()

const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;

int N,K,T,mid;
vi X;

bool good(vd x, vd y) {
    if (x[0] > y[0]) return 0;
    pi L = {0,0}, R = {0,0};
    bool ok = 1;
    while (ok) {
        ok = 0;
        while (L.s < sz(x)-1 && x[L.s+1] <= y[R.f]) {
            ok = 1;
            if (x[++L.s] < x[L.f]) L.f = L.s;
        }
        while (R.s < sz(y)-1 && x[L.f] <= y[R.s+1]) {
            ok = 1;
            if (y[++R.s] > y[R.f]) R.f = R.s;
        }
    }
    return L.s == sz(x)-1 && R.s == sz(y)-1;
}

bool OK() {
    vd x,y;
    F0Rd(i,K+1) x.pb((ld)2*mid*T*i-X[i]);
    FOR(i,K,N) y.pb((ld)2*mid*T*i-X[i]);
    if (!good(x,y)) return 0;
    reverse(all(x)), reverse(all(y));
    if (!good(x,y)) return 0;
    return 1;
}

int main() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> K >> T; X.resize(N); K--;
    F0R(i,N) cin >> X[i];
    /*mid = 25303;
    cout << OK();
    exit(0);*/
    int lo = 0, hi = 1000000000;
    while (lo < hi) {
        mid = (lo+hi)/2;
        if (OK()) hi = mid;
        else lo = mid+1;
    }
    cout << lo;
}

/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 548 KB Output is correct
4 Correct 3 ms 548 KB Output is correct
5 Correct 2 ms 548 KB Output is correct
6 Correct 2 ms 720 KB Output is correct
7 Correct 2 ms 720 KB Output is correct
8 Correct 2 ms 720 KB Output is correct
9 Correct 3 ms 764 KB Output is correct
10 Correct 2 ms 764 KB Output is correct
11 Correct 2 ms 764 KB Output is correct
12 Correct 3 ms 764 KB Output is correct
13 Correct 2 ms 764 KB Output is correct
14 Correct 2 ms 764 KB Output is correct
15 Correct 2 ms 764 KB Output is correct
16 Correct 2 ms 764 KB Output is correct
17 Correct 3 ms 764 KB Output is correct
18 Correct 2 ms 764 KB Output is correct
19 Correct 2 ms 764 KB Output is correct
20 Correct 3 ms 812 KB Output is correct
21 Correct 2 ms 812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 548 KB Output is correct
4 Correct 3 ms 548 KB Output is correct
5 Correct 2 ms 548 KB Output is correct
6 Correct 2 ms 720 KB Output is correct
7 Correct 2 ms 720 KB Output is correct
8 Correct 2 ms 720 KB Output is correct
9 Correct 3 ms 764 KB Output is correct
10 Correct 2 ms 764 KB Output is correct
11 Correct 2 ms 764 KB Output is correct
12 Correct 3 ms 764 KB Output is correct
13 Correct 2 ms 764 KB Output is correct
14 Correct 2 ms 764 KB Output is correct
15 Correct 2 ms 764 KB Output is correct
16 Correct 2 ms 764 KB Output is correct
17 Correct 3 ms 764 KB Output is correct
18 Correct 2 ms 764 KB Output is correct
19 Correct 2 ms 764 KB Output is correct
20 Correct 3 ms 812 KB Output is correct
21 Correct 2 ms 812 KB Output is correct
22 Correct 3 ms 812 KB Output is correct
23 Correct 3 ms 812 KB Output is correct
24 Correct 4 ms 812 KB Output is correct
25 Correct 4 ms 812 KB Output is correct
26 Correct 4 ms 812 KB Output is correct
27 Correct 4 ms 812 KB Output is correct
28 Correct 3 ms 812 KB Output is correct
29 Correct 3 ms 828 KB Output is correct
30 Correct 4 ms 840 KB Output is correct
31 Correct 4 ms 840 KB Output is correct
32 Correct 4 ms 928 KB Output is correct
33 Correct 5 ms 928 KB Output is correct
34 Correct 4 ms 928 KB Output is correct
35 Correct 5 ms 928 KB Output is correct
36 Correct 3 ms 928 KB Output is correct
37 Correct 3 ms 928 KB Output is correct
38 Correct 4 ms 928 KB Output is correct
39 Correct 4 ms 928 KB Output is correct
40 Correct 5 ms 928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 548 KB Output is correct
4 Correct 3 ms 548 KB Output is correct
5 Correct 2 ms 548 KB Output is correct
6 Correct 2 ms 720 KB Output is correct
7 Correct 2 ms 720 KB Output is correct
8 Correct 2 ms 720 KB Output is correct
9 Correct 3 ms 764 KB Output is correct
10 Correct 2 ms 764 KB Output is correct
11 Correct 2 ms 764 KB Output is correct
12 Correct 3 ms 764 KB Output is correct
13 Correct 2 ms 764 KB Output is correct
14 Correct 2 ms 764 KB Output is correct
15 Correct 2 ms 764 KB Output is correct
16 Correct 2 ms 764 KB Output is correct
17 Correct 3 ms 764 KB Output is correct
18 Correct 2 ms 764 KB Output is correct
19 Correct 2 ms 764 KB Output is correct
20 Correct 3 ms 812 KB Output is correct
21 Correct 2 ms 812 KB Output is correct
22 Correct 3 ms 812 KB Output is correct
23 Correct 3 ms 812 KB Output is correct
24 Correct 4 ms 812 KB Output is correct
25 Correct 4 ms 812 KB Output is correct
26 Correct 4 ms 812 KB Output is correct
27 Correct 4 ms 812 KB Output is correct
28 Correct 3 ms 812 KB Output is correct
29 Correct 3 ms 828 KB Output is correct
30 Correct 4 ms 840 KB Output is correct
31 Correct 4 ms 840 KB Output is correct
32 Correct 4 ms 928 KB Output is correct
33 Correct 5 ms 928 KB Output is correct
34 Correct 4 ms 928 KB Output is correct
35 Correct 5 ms 928 KB Output is correct
36 Correct 3 ms 928 KB Output is correct
37 Correct 3 ms 928 KB Output is correct
38 Correct 4 ms 928 KB Output is correct
39 Correct 4 ms 928 KB Output is correct
40 Correct 5 ms 928 KB Output is correct
41 Correct 132 ms 4400 KB Output is correct
42 Correct 5 ms 4400 KB Output is correct
43 Correct 33 ms 4400 KB Output is correct
44 Correct 155 ms 6980 KB Output is correct
45 Correct 143 ms 7780 KB Output is correct
46 Correct 155 ms 8900 KB Output is correct
47 Correct 161 ms 9964 KB Output is correct
48 Correct 169 ms 10444 KB Output is correct
49 Correct 189 ms 11780 KB Output is correct
50 Correct 192 ms 12552 KB Output is correct
51 Correct 187 ms 13836 KB Output is correct
52 Correct 186 ms 15696 KB Output is correct
53 Correct 184 ms 15696 KB Output is correct
54 Correct 210 ms 17424 KB Output is correct
55 Correct 154 ms 17468 KB Output is correct
56 Correct 177 ms 18732 KB Output is correct
57 Correct 179 ms 19544 KB Output is correct
58 Correct 147 ms 20132 KB Output is correct
59 Correct 185 ms 20632 KB Output is correct
60 Correct 193 ms 22688 KB Output is correct
61 Correct 168 ms 23412 KB Output is correct
62 Correct 160 ms 23664 KB Output is correct
63 Correct 193 ms 25060 KB Output is correct
64 Correct 167 ms 25452 KB Output is correct
65 Correct 168 ms 25976 KB Output is correct
66 Correct 176 ms 27160 KB Output is correct
67 Correct 160 ms 27896 KB Output is correct
68 Correct 193 ms 30136 KB Output is correct
69 Correct 172 ms 31120 KB Output is correct