Submission #69460

#TimeUsernameProblemLanguageResultExecution timeMemory
69460BenqLong Distance Coach (JOI17_coach)C++14
71 / 100
2054 ms15112 KiB
#pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #include <ext/rope> using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 4e18; const int MX = 200001; ll X,N,M,W,T,dp[MX]; vl S; vpl D; void mn(ll& a, ll b) { a = min(a,b); } int getLst(ll x) { return lb(all(D),mp(x%T,0LL))-D.begin()-1; } ll cost[MX]; void genCost (int a) { F0Rd(i,sz(S)) if (getLst(S[i]) == a) FOR(j,getLst(S[i])+1,M+1) mn(cost[j],S[i]/T*W); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> X >> N >> M >> W >> T; S.resize(N+1); F0R(i,N) cin >> S[i]; S[N] = X; D.resize(M+1); F0R(i,M) cin >> D[i].f >> D[i].s; D[M] = {T,0}; sort(all(D)); F0R(i,M+1) dp[i] = cost[i] = INF; dp[M] = (X/T+1)*W; F0Rd(i,M) { genCost(i); FOR(j,i+1,M+1) { mn(dp[i],dp[j]); dp[j] += D[i].s+cost[j]; mn(dp[j],INF); } dp[i] += ((X-D[i].f)/T+1)*W; /*F0R(j,M+1) cout << cost[j] << " "; cout << "\n"; F0R(j,M+1) cout << dp[j] << " "; cout << "\n\n";*/ } ll ans = INF; F0R(i,M+1) mn(ans,dp[i]); cout << ans; } /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds * if you have no idea just guess the appropriate well-known algo instead of doing nothing :/ */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...