Submission #69432

# Submission time Handle Problem Language Result Execution time Memory
69432 2018-08-20T20:38:31 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
2100 ms 11460 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
const ld PI = 4*atan((ld)1);
 
namespace geo {
    istream& operator>> (istream& is, pi& p) {
        is >> p.f >> p.s;
        return is;
    }
    void nor(pd& x) { if (x.f < -PI) x.f += 2*PI, x.s += 2*PI; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
    pi operator-(const pi& l, const pi& r) { return {l.f-r.f,l.s-r.s}; }
}

using namespace geo;

struct BIT {
    vector<array<int,3>> toUpd;
    vector<pair<array<int,3>,int*>> toQuery;
    vi m, bit;
    
    void clr() {
        toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
    }
    
    void upd(int x, int y) {
        for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(int x, int y, int* z) {
        for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X)) 
            (*z) += y*bit[X];
    }
    
    void prop() {
        for (auto x: toUpd) m.pb(x[1]);
        m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
        bit.resize(sz(m));
        sort(all(toUpd)), sort(all(toQuery));
        
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};

int N,M,group[MX],ans[100001];
vi member[MX];
pi pos[MX], h[2];
pi POS[MX];
pair<pi,pi> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;

void process1(int x) {
    z.clr();
    array<int,MX> co; co.fill(0);
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+N,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+N,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+N,POS[a].s+N,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}

void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}

void process(int x) {
    if ((ll)sz(member[x])*sz(query[x]) >= N) process1(x);
    else process2(x);
}

int half(pi x) {
    if (x.s != 0) return x.s > 0;
    return x.f > 0;
}

bool cmp(pi a, pi b) {
    if (half(a) != half(b)) return half(a) < half(b);
    /*if (half(a) == 0) {
        return -(ll)b.s*a.f > -(ll)a.s*b.f;
    } else {*/
        return (ll)a.f*b.s > (ll)a.s*b.f;
    // }
}

pi nor(pi x) {
    while (x.f < 0) x.f += N, x.s += N;
    while (x.f >= N) x.f -= N, x.s -= N;
    return x;
}

ll area(pi a, pi b) {
    return (ll)a.f*b.s-(ll)a.s*b.f;
}

ll area(pi a, pi b, pi c) {
    b.f -= a.f, b.s -= a.s;
    c.f -= a.f, c.s -= a.s;
    return area(b,c);
}

void genCoordinate(int ind) {
    vector<pair<pi,int>> v;
    FOR(i,1,N+1) v.pb({pos[i]-h[ind],i});
    sort(all(v),[](auto a, auto b) { return cmp(a.f,b.f); });
    /*for (auto a: v) {
        cout << "HI " << a.f.f << " " << a.f.s << " " << a.s << "\n";
    }
    cout << "\n";*/
    int cur = 0;
    F0R(i,N) {
        while (cur < i+N && area(v[i].f,v[cur%N].f) >= 0) cur ++;
        if (ind == 0) POS[v[i].s].f = i;
        else POS[v[i].s].s = i;
        
        if (area(h[0],h[1],pos[v[i].s]) > 0) {
            if (ind == 0) BOUND[v[i].s].f = nor({cur-1,i+N});
            else BOUND[v[i].s].s = nor({i-1,cur-1});
        } else {
            if (ind == 0) BOUND[v[i].s].f = nor({i-1,cur-1});
            else BOUND[v[i].s].s = nor({cur-1,i+N});
        }
    }
}

void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    cin >> h[0] >> h[1];
    genCoordinate(0);
    genCoordinate(1);
    /*FOR(i,1,N+1) {
        
        cout << i << " " << POS[i].f << " " << POS[i].s << " " << BOUND[i].f.f << " " << BOUND[i].f.s << " " << BOUND[i].s.f << " " << BOUND[i].s.s << "\n";
    }*/
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    FOR(i,1,M+1) {
        z.clr();
        for (auto a: query2[i]) for (int b: member[a.f]) {
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+N,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+N,1});
            z.toUpd.pb({POS[a].f+N,POS[a].s+N,1});
        }
        z.prop();
    }
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# Verdict Execution time Memory Grader output
1 Correct 11 ms 2996 KB Output is correct
2 Correct 23 ms 3228 KB Output is correct
3 Correct 103 ms 3228 KB Output is correct
4 Correct 182 ms 5548 KB Output is correct
5 Correct 78 ms 6120 KB Output is correct
6 Correct 7 ms 6120 KB Output is correct
7 Correct 7 ms 6120 KB Output is correct
8 Correct 9 ms 6120 KB Output is correct
9 Correct 10 ms 6120 KB Output is correct
10 Correct 8 ms 6120 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 83 ms 6848 KB Output is correct
2 Correct 201 ms 7396 KB Output is correct
3 Correct 77 ms 7396 KB Output is correct
4 Correct 42 ms 7396 KB Output is correct
5 Correct 36 ms 7396 KB Output is correct
6 Correct 70 ms 7396 KB Output is correct
7 Correct 70 ms 7396 KB Output is correct
8 Correct 73 ms 7396 KB Output is correct
9 Correct 59 ms 7396 KB Output is correct
10 Correct 51 ms 7396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 2996 KB Output is correct
2 Correct 23 ms 3228 KB Output is correct
3 Correct 103 ms 3228 KB Output is correct
4 Correct 182 ms 5548 KB Output is correct
5 Correct 78 ms 6120 KB Output is correct
6 Correct 7 ms 6120 KB Output is correct
7 Correct 7 ms 6120 KB Output is correct
8 Correct 9 ms 6120 KB Output is correct
9 Correct 10 ms 6120 KB Output is correct
10 Correct 8 ms 6120 KB Output is correct
11 Correct 83 ms 6848 KB Output is correct
12 Correct 201 ms 7396 KB Output is correct
13 Correct 77 ms 7396 KB Output is correct
14 Correct 42 ms 7396 KB Output is correct
15 Correct 36 ms 7396 KB Output is correct
16 Correct 70 ms 7396 KB Output is correct
17 Correct 70 ms 7396 KB Output is correct
18 Correct 73 ms 7396 KB Output is correct
19 Correct 59 ms 7396 KB Output is correct
20 Correct 51 ms 7396 KB Output is correct
21 Correct 77 ms 7396 KB Output is correct
22 Correct 212 ms 7396 KB Output is correct
23 Correct 1424 ms 7396 KB Output is correct
24 Correct 2100 ms 7916 KB Output is correct
25 Correct 203 ms 7916 KB Output is correct
26 Correct 130 ms 8200 KB Output is correct
27 Correct 40 ms 8200 KB Output is correct
28 Correct 40 ms 8200 KB Output is correct
29 Incorrect 202 ms 11460 KB Output isn't correct
30 Halted 0 ms 0 KB -