Submission #69414

# Submission time Handle Problem Language Result Execution time Memory
69414 2018-08-20T19:36:29 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
2259 ms 19148 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
namespace geo {
    template<class T> istream& operator>> (istream& is, complex<T>& p) {
        T value;
        is >> value; p.real(value);
        is >> value; p.imag(value);
        return is;
    }
    void nor(pd& x) { if (x.f < -M_PIl) x.f += 2*M_PIl, x.s += 2*M_PIl; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
}

using namespace geo;

struct BIT {
    vector<array<int,3>> toUpd;
    vector<pair<array<int,3>,int*>> toQuery;
    vi m, bit;
    
    void clr() {
        toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
    }
    
    void upd(int x, int y) {
        for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(int x, int y, int* z) {
        for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X)) 
            (*z) += y*bit[X];
    }
    
    void prop() {
        for (auto x: toUpd) m.pb(x[1]);
        m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
        bit.resize(sz(m));
        sort(all(toUpd)), sort(all(toQuery));
        
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};

int N,M,group[MX],ans[100001];
vi member[MX];
cd pos[MX], h[2];
pi POS[MX];
pair<pi,pi> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;

void process1(int x) {
    z.clr();
    array<int,MX> co; co.fill(0);
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+N,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+N,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+N,POS[a].s+N,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}

void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}

void process(int x) {
    if ((ll)sz(member[x])*sz(query[x]) >= N) process1(x);
    else process2(x);
}

/*int get() {
    int z = 1e9;
    return rand() % (2*z+1)-z;
}

cd gen() { return {get(),get()}; }*/

void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        //pos[i] = gen();
        //group[i] = rand() % M+1;
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    cin >> h[0] >> h[1];
    // h[0] = gen(); h[1] = gen();
    pd POS2[MX]; pair<pd,pd> BOUND2[MX];
    FOR(i,1,N+1) {
        POS2[i].f = arg(pos[i]-h[0]), POS2[i].s = arg(pos[i]-h[1]);
        if (area(h[0],h[1],pos[i]) > 0) BOUND2[i] = {{POS2[i].f-M_PIl,POS2[i].f},{POS2[i].s,POS2[i].s+M_PIl}};
        else BOUND2[i] = {{POS2[i].f,POS2[i].f+M_PIl},{POS2[i].s-M_PIl,POS2[i].s}};
        nor(BOUND2[i].f); nor(BOUND2[i].s);
    }
    map<ld,int> m[2];
    FOR(i,1,N+1) {
        m[0][POS2[i].f] = m[0][POS2[i].f+2*M_PIl] = 0;
        m[1][POS2[i].s] = m[1][POS2[i].s+2*M_PIl] = 0;
    }
    F0R(i,2) {
        int co = 0;
        for (auto& a: m[i]) a.s = ++co;
    }
    FOR(i,1,N+1) {
        POS[i].f = m[0][POS2[i].f];
        POS[i].s = m[1][POS2[i].s];
        BOUND[i].f.f = m[0].lb(BOUND2[i].f.f)->s-1;
        BOUND[i].f.s = prev(m[0].ub(BOUND2[i].f.s))->s;
        BOUND[i].s.f = m[1].lb(BOUND2[i].s.f)->s-1;
        BOUND[i].s.s = prev(m[1].ub(BOUND2[i].s.s))->s;
        // cout << "OH " << POS[i].f << " " << POS[i].s << " " << BOUND[i].f.f << " " << BOUND[i].f.s << " " << BOUND[i].s.f << " " << BOUND[i].s.s << "\n";
    }
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    int tmp = 0;
    FOR(i,1,M+1) {
        z.clr();
        for (auto a: query2[i]) for (int b: member[a.f]) {
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+N,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+N,1});
            z.toUpd.pb({POS[a].f+N,POS[a].s+N,1});
        }
        tmp += sz(z.toQuery);
        z.prop();
    }
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# Verdict Execution time Memory Grader output
1 Correct 21 ms 6392 KB Output is correct
2 Correct 32 ms 6888 KB Output is correct
3 Correct 111 ms 6888 KB Output is correct
4 Correct 196 ms 8536 KB Output is correct
5 Correct 89 ms 9092 KB Output is correct
6 Correct 17 ms 9092 KB Output is correct
7 Correct 18 ms 9092 KB Output is correct
8 Correct 25 ms 9092 KB Output is correct
9 Correct 17 ms 9092 KB Output is correct
10 Correct 18 ms 9092 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 317 ms 16780 KB Output is correct
2 Correct 359 ms 19148 KB Output is correct
3 Correct 383 ms 19148 KB Output is correct
4 Correct 273 ms 19148 KB Output is correct
5 Correct 278 ms 19148 KB Output is correct
6 Correct 197 ms 19148 KB Output is correct
7 Correct 248 ms 19148 KB Output is correct
8 Correct 229 ms 19148 KB Output is correct
9 Correct 139 ms 19148 KB Output is correct
10 Correct 139 ms 19148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 21 ms 6392 KB Output is correct
2 Correct 32 ms 6888 KB Output is correct
3 Correct 111 ms 6888 KB Output is correct
4 Correct 196 ms 8536 KB Output is correct
5 Correct 89 ms 9092 KB Output is correct
6 Correct 17 ms 9092 KB Output is correct
7 Correct 18 ms 9092 KB Output is correct
8 Correct 25 ms 9092 KB Output is correct
9 Correct 17 ms 9092 KB Output is correct
10 Correct 18 ms 9092 KB Output is correct
11 Correct 317 ms 16780 KB Output is correct
12 Correct 359 ms 19148 KB Output is correct
13 Correct 383 ms 19148 KB Output is correct
14 Correct 273 ms 19148 KB Output is correct
15 Correct 278 ms 19148 KB Output is correct
16 Correct 197 ms 19148 KB Output is correct
17 Correct 248 ms 19148 KB Output is correct
18 Correct 229 ms 19148 KB Output is correct
19 Correct 139 ms 19148 KB Output is correct
20 Correct 139 ms 19148 KB Output is correct
21 Correct 263 ms 19148 KB Output is correct
22 Correct 385 ms 19148 KB Output is correct
23 Correct 1470 ms 19148 KB Output is correct
24 Correct 2259 ms 19148 KB Output is correct
25 Correct 459 ms 19148 KB Output is correct
26 Correct 367 ms 19148 KB Output is correct
27 Correct 267 ms 19148 KB Output is correct
28 Correct 199 ms 19148 KB Output is correct
29 Incorrect 402 ms 19148 KB Output isn't correct
30 Halted 0 ms 0 KB -