Submission #69409

# Submission time Handle Problem Language Result Execution time Memory
69409 2018-08-20T19:10:16 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
4000 ms 22448 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
namespace geo {
    template<class T> istream& operator>> (istream& is, complex<T>& p) {
        T value;
        is >> value; p.real(value);
        is >> value; p.imag(value);
        return is;
    }
    void nor(pd& x) { if (x.f < -M_PIl) x.f += 2*M_PIl, x.s += 2*M_PIl; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
}
 
using namespace geo;
 
struct BIT {
    vector<array<ld,3>> toUpd;
    vector<pair<array<ld,3>,int*>> toQuery;
    vd m;
    vi bit;
    
    void clr() {
        toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
    }
    
    void upd(ld x, int y) {
        for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(ld x, int y, int* z) {
        for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X)) 
            (*z) += y*bit[X];
    }
    
    void prop() {
        for (auto x: toUpd) m.pb(x[1]);
        m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
        bit.resize(sz(m));
        sort(all(toUpd)), sort(all(toQuery));
        
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};
 
int N,M,group[MX],ans[100001];
vi member[MX];
cd pos[MX], h[2];
pd POS[MX];
pair<pd,pd> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;
 
void process1(int x) {
    z.clr();
    array<int,MX> co; co.fill(0);
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+2*M_PIl,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}
 
void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}
 
void process(int x) {
    if (sz(member[x]) >= 500) process1(x);
    else process2(x);
}
 
int get() {
    int z = 1e9;
    return rand() % (2*z+1)-z;
}
 
cd gen() { return {get(),get()}; }
 
void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        //pos[i] = gen();
        //group[i] = rand() % M+1;
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    //h[0] = gen();
    //h[1] = gen();
    F0R(i,2) cin >> h[i];
    FOR(i,1,N+1) {
        POS[i].f = arg(pos[i]-h[0]);
        POS[i].s = arg(pos[i]-h[1]);
        if (area(h[0],h[1],pos[i]) > 0) BOUND[i] = {{POS[i].f-M_PIl,POS[i].f},{POS[i].s,POS[i].s+M_PIl}};
        else BOUND[i] = {{POS[i].f,POS[i].f+M_PIl},{POS[i].s-M_PIl,POS[i].s}};
        nor(BOUND[i].f); nor(BOUND[i].s);
    }
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        // int f = rand() % M+1, g = rand() % M+1;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    int tmp = 0;
    FOR(i,1,M+1) {
        z.clr();
        for (auto a: query2[i]) for (int b: member[a.f]) {
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+2*M_PIl,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1});
        }
        tmp += sz(z.toQuery);
        z.prop();
    }
    // cout << tmp << "\n";
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/

Compilation message

dragon2.cpp: In function 'cd gen()':
dragon2.cpp:139:23: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
 cd gen() { return {get(),get()}; }
                    ~~~^~
dragon2.cpp:139:29: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
 cd gen() { return {get(),get()}; }
                          ~~~^~
# Verdict Execution time Memory Grader output
1 Correct 28 ms 4592 KB Output is correct
2 Correct 33 ms 4592 KB Output is correct
3 Correct 188 ms 4592 KB Output is correct
4 Correct 353 ms 6072 KB Output is correct
5 Correct 131 ms 6600 KB Output is correct
6 Correct 11 ms 6600 KB Output is correct
7 Correct 16 ms 6600 KB Output is correct
8 Correct 29 ms 6600 KB Output is correct
9 Correct 21 ms 6600 KB Output is correct
10 Correct 22 ms 6600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 285 ms 20008 KB Output is correct
2 Correct 634 ms 20008 KB Output is correct
3 Correct 114 ms 20008 KB Output is correct
4 Correct 88 ms 20008 KB Output is correct
5 Correct 54 ms 20008 KB Output is correct
6 Correct 248 ms 20008 KB Output is correct
7 Correct 302 ms 20008 KB Output is correct
8 Correct 265 ms 20008 KB Output is correct
9 Correct 204 ms 20008 KB Output is correct
10 Correct 198 ms 20008 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 28 ms 4592 KB Output is correct
2 Correct 33 ms 4592 KB Output is correct
3 Correct 188 ms 4592 KB Output is correct
4 Correct 353 ms 6072 KB Output is correct
5 Correct 131 ms 6600 KB Output is correct
6 Correct 11 ms 6600 KB Output is correct
7 Correct 16 ms 6600 KB Output is correct
8 Correct 29 ms 6600 KB Output is correct
9 Correct 21 ms 6600 KB Output is correct
10 Correct 22 ms 6600 KB Output is correct
11 Correct 285 ms 20008 KB Output is correct
12 Correct 634 ms 20008 KB Output is correct
13 Correct 114 ms 20008 KB Output is correct
14 Correct 88 ms 20008 KB Output is correct
15 Correct 54 ms 20008 KB Output is correct
16 Correct 248 ms 20008 KB Output is correct
17 Correct 302 ms 20008 KB Output is correct
18 Correct 265 ms 20008 KB Output is correct
19 Correct 204 ms 20008 KB Output is correct
20 Correct 198 ms 20008 KB Output is correct
21 Correct 274 ms 20008 KB Output is correct
22 Correct 647 ms 20008 KB Output is correct
23 Correct 2528 ms 20008 KB Output is correct
24 Correct 3807 ms 20008 KB Output is correct
25 Correct 318 ms 20008 KB Output is correct
26 Correct 151 ms 20008 KB Output is correct
27 Correct 69 ms 20008 KB Output is correct
28 Correct 66 ms 20008 KB Output is correct
29 Correct 302 ms 21904 KB Output is correct
30 Correct 277 ms 22264 KB Output is correct
31 Correct 261 ms 22448 KB Output is correct
32 Correct 1391 ms 22448 KB Output is correct
33 Execution timed out 4038 ms 22448 KB Time limit exceeded
34 Halted 0 ms 0 KB -