Submission #69401

# Submission time Handle Problem Language Result Execution time Memory
69401 2018-08-20T18:59:36 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
4000 ms 39896 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
namespace geo {
    template<class T> istream& operator>> (istream& is, complex<T>& p) {
        T value;
        is >> value; p.real(value);
        is >> value; p.imag(value);
        return is;
    }
    void nor(pd& x) { if (x.f < -M_PIl) x.f += 2*M_PIl, x.s += 2*M_PIl; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
}

using namespace geo;

struct BIT {
    vector<array<ld,3>> toUpd;
    vector<pair<array<ld,3>,int*>> toQuery;
    vd m;
    vi bit;
    
    void clr() {
        toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
    }
    
    void upd(ld x, int y) {
        for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(ld x, int y, int* z) {
        for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X)) 
            (*z) += y*bit[X];
    }
    
    void prop() {
        for (auto x: toUpd) m.pb(x[1]);
        m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
        bit.resize(sz(m));
        sort(all(toUpd)), sort(all(toQuery));
        
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};

int N,M,group[MX],ans[100001];
vi member[MX];
cd pos[MX], h[2];
pd POS[MX];
pair<pd,pd> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;

void process1(int x) {
    z.clr();
    array<int,MX> co; co.fill(0);
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+2*M_PIl,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}

void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}

void process(int x) {
    if (sz(member[x])*sz(query[x]) >= N) process1(x);
    else process2(x);
}

int get() {
    int z = 1e9;
    return rand() % (2*z+1)-z;
}

cd gen() { return {get(),get()}; }

void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        //pos[i] = gen();
        //group[i] = rand() % M+1;
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    //h[0] = gen();
    //h[1] = gen();
    F0R(i,2) cin >> h[i];
    FOR(i,1,N+1) {
        POS[i].f = arg(pos[i]-h[0]);
        POS[i].s = arg(pos[i]-h[1]);
        if (area(h[0],h[1],pos[i]) > 0) BOUND[i] = {{POS[i].f-M_PIl,POS[i].f},{POS[i].s,POS[i].s+M_PIl}};
        else BOUND[i] = {{POS[i].f,POS[i].f+M_PIl},{POS[i].s-M_PIl,POS[i].s}};
        nor(BOUND[i].f); nor(BOUND[i].s);
    }
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        // int f = rand() % M+1, g = rand() % M+1;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    int tmp = 0;
    FOR(i,1,M+1) {
        z.clr();
        for (auto a: query2[i]) for (int b: member[a.f]) {
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+2*M_PIl,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1});
        }
        tmp += sz(z.toQuery);
        z.prop();
    }
    // cout << tmp << "\n";
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/

Compilation message

dragon2.cpp: In function 'cd gen()':
dragon2.cpp:139:23: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
 cd gen() { return {get(),get()}; }
                    ~~~^~
dragon2.cpp:139:29: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
 cd gen() { return {get(),get()}; }
                          ~~~^~
# Verdict Execution time Memory Grader output
1 Correct 17 ms 3960 KB Output is correct
2 Correct 37 ms 4196 KB Output is correct
3 Correct 169 ms 4196 KB Output is correct
4 Correct 285 ms 6112 KB Output is correct
5 Correct 104 ms 6424 KB Output is correct
6 Correct 10 ms 6424 KB Output is correct
7 Correct 10 ms 6424 KB Output is correct
8 Correct 16 ms 6424 KB Output is correct
9 Correct 13 ms 6424 KB Output is correct
10 Correct 12 ms 6424 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 162 ms 16436 KB Output is correct
2 Correct 352 ms 16436 KB Output is correct
3 Correct 117 ms 16436 KB Output is correct
4 Correct 66 ms 16436 KB Output is correct
5 Correct 60 ms 16436 KB Output is correct
6 Correct 118 ms 17316 KB Output is correct
7 Correct 120 ms 17316 KB Output is correct
8 Correct 135 ms 17316 KB Output is correct
9 Correct 126 ms 17316 KB Output is correct
10 Correct 104 ms 17316 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 3960 KB Output is correct
2 Correct 37 ms 4196 KB Output is correct
3 Correct 169 ms 4196 KB Output is correct
4 Correct 285 ms 6112 KB Output is correct
5 Correct 104 ms 6424 KB Output is correct
6 Correct 10 ms 6424 KB Output is correct
7 Correct 10 ms 6424 KB Output is correct
8 Correct 16 ms 6424 KB Output is correct
9 Correct 13 ms 6424 KB Output is correct
10 Correct 12 ms 6424 KB Output is correct
11 Correct 162 ms 16436 KB Output is correct
12 Correct 352 ms 16436 KB Output is correct
13 Correct 117 ms 16436 KB Output is correct
14 Correct 66 ms 16436 KB Output is correct
15 Correct 60 ms 16436 KB Output is correct
16 Correct 118 ms 17316 KB Output is correct
17 Correct 120 ms 17316 KB Output is correct
18 Correct 135 ms 17316 KB Output is correct
19 Correct 126 ms 17316 KB Output is correct
20 Correct 104 ms 17316 KB Output is correct
21 Correct 129 ms 17316 KB Output is correct
22 Correct 342 ms 17316 KB Output is correct
23 Correct 2613 ms 17316 KB Output is correct
24 Correct 3722 ms 17316 KB Output is correct
25 Correct 307 ms 17316 KB Output is correct
26 Correct 201 ms 17316 KB Output is correct
27 Correct 71 ms 17316 KB Output is correct
28 Correct 59 ms 17316 KB Output is correct
29 Correct 310 ms 29140 KB Output is correct
30 Correct 298 ms 31012 KB Output is correct
31 Correct 269 ms 33152 KB Output is correct
32 Correct 243 ms 33152 KB Output is correct
33 Correct 3791 ms 33152 KB Output is correct
34 Correct 235 ms 33152 KB Output is correct
35 Correct 231 ms 36328 KB Output is correct
36 Correct 225 ms 36328 KB Output is correct
37 Correct 212 ms 36328 KB Output is correct
38 Execution timed out 4038 ms 39896 KB Time limit exceeded
39 Halted 0 ms 0 KB -