Submission #69396

# Submission time Handle Problem Language Result Execution time Memory
69396 2018-08-20T18:44:17 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
4000 ms 26744 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
namespace geo {
    template<class T> istream& operator>> (istream& is, complex<T>& p) {
        T value;
        is >> value; p.real(value);
        is >> value; p.imag(value);
        return is;
    }
    void nor(pd& x) { if (x.f < -M_PIl) x.f += 2*M_PIl, x.s += 2*M_PIl; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
}

using namespace geo;

struct BIT {
    vector<array<ld,3>> toUpd;
    vector<pair<array<ld,3>,int*>> toQuery;
    map<ld,int> m;
    vi bit;
    
    void upd(ld x, int y) {
        for (int X = m[x]; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(ld x, int y, int* z) {
        int t = 0;
        auto it = m.ub(x);
        for (int X = (it == m.begin() ? 0 : prev(it)->s); X; X -= (X&-X)) {
            (*z) += y*bit[X];
            t += y*bit[X];
        }
    }
    
    void prop() {
        for (auto x: toUpd) m[x[1]] = 0;
        int co = 0; for (auto& a: m) a.s = ++co;
        bit.resize(sz(m)+1);
        
        sort(all(toUpd)), sort(all(toQuery));
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};

int N,M,group[MX],ans[100001];
vi member[MX];
cd pos[MX], h[2];
pd POS[MX];
pair<pd,pd> BOUND[MX];
vpi query[MX], query2[MX];

void process1(int x) {
    BIT z; array<int,MX> co; co.fill(0);
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+2*M_PIl,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}

void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}

void process(int x) {
    if (sz(member[x]) >= 500) process1(x);
    else process2(x);
}

void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    F0R(i,2) cin >> h[i];
    FOR(i,1,N+1) {
        POS[i].f = arg(pos[i]-h[0]);
        POS[i].s = arg(pos[i]-h[1]);
        if (area(h[0],h[1],pos[i]) > 0) BOUND[i] = {{POS[i].f-M_PIl,POS[i].f},{POS[i].s,POS[i].s+M_PIl}};
        else BOUND[i] = {{POS[i].f,POS[i].f+M_PIl},{POS[i].s-M_PIl,POS[i].s}};
        nor(BOUND[i].f); nor(BOUND[i].s);
    }
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    FOR(i,1,M+1) {
        BIT z;
        for (auto a: query2[i]) for (int b: member[a.f]) {
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+2*M_PIl,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1});
        }
        z.prop();
    }
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# Verdict Execution time Memory Grader output
1 Correct 33 ms 5204 KB Output is correct
2 Correct 35 ms 5204 KB Output is correct
3 Correct 255 ms 5204 KB Output is correct
4 Correct 460 ms 6140 KB Output is correct
5 Correct 121 ms 6544 KB Output is correct
6 Correct 11 ms 6544 KB Output is correct
7 Correct 13 ms 6544 KB Output is correct
8 Correct 32 ms 6544 KB Output is correct
9 Correct 25 ms 6544 KB Output is correct
10 Correct 29 ms 6544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 423 ms 26388 KB Output is correct
2 Correct 952 ms 26388 KB Output is correct
3 Correct 139 ms 26388 KB Output is correct
4 Correct 78 ms 26388 KB Output is correct
5 Correct 70 ms 26388 KB Output is correct
6 Correct 369 ms 26448 KB Output is correct
7 Correct 406 ms 26528 KB Output is correct
8 Correct 378 ms 26744 KB Output is correct
9 Correct 291 ms 26744 KB Output is correct
10 Correct 264 ms 26744 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 33 ms 5204 KB Output is correct
2 Correct 35 ms 5204 KB Output is correct
3 Correct 255 ms 5204 KB Output is correct
4 Correct 460 ms 6140 KB Output is correct
5 Correct 121 ms 6544 KB Output is correct
6 Correct 11 ms 6544 KB Output is correct
7 Correct 13 ms 6544 KB Output is correct
8 Correct 32 ms 6544 KB Output is correct
9 Correct 25 ms 6544 KB Output is correct
10 Correct 29 ms 6544 KB Output is correct
11 Correct 423 ms 26388 KB Output is correct
12 Correct 952 ms 26388 KB Output is correct
13 Correct 139 ms 26388 KB Output is correct
14 Correct 78 ms 26388 KB Output is correct
15 Correct 70 ms 26388 KB Output is correct
16 Correct 369 ms 26448 KB Output is correct
17 Correct 406 ms 26528 KB Output is correct
18 Correct 378 ms 26744 KB Output is correct
19 Correct 291 ms 26744 KB Output is correct
20 Correct 264 ms 26744 KB Output is correct
21 Correct 439 ms 26744 KB Output is correct
22 Correct 1097 ms 26744 KB Output is correct
23 Correct 2950 ms 26744 KB Output is correct
24 Execution timed out 4022 ms 26744 KB Time limit exceeded
25 Halted 0 ms 0 KB -