Submission #69394

# Submission time Handle Problem Language Result Execution time Memory
69394 2018-08-20T18:38:44 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
4000 ms 31544 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
namespace geo {
    template<class T> istream& operator>> (istream& is, complex<T>& p) {
        T value;
        is >> value; p.real(value);
        is >> value; p.imag(value);
        return is;
    }
    void nor(pd& x) { if (x.f < -M_PIl) x.f += 2*M_PIl, x.s += 2*M_PIl; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
}

using namespace geo;

struct BIT {
    vector<array<ld,3>> toUpd;
    vector<pair<array<ld,3>,int*>> toQuery;
    map<ld,int> m;
    vi bit;
    
    void upd(ld x, int y) {
        // cout << "OOPS " << x << " " << y << "\n";
        for (int X = m[x]; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(ld x, int y, int* z) {
        int t = 0;
        auto it = m.ub(x);
        // cout << z << "\n";
        for (int X = (it == m.begin() ? 0 : prev(it)->s); X; X -= (X&-X)) {
            (*z) += y*bit[X];
            t += y*bit[X];
        }
        // cout << "HUH " << x << " " << y << " " << t << " " << z << "\n";
    }
    
    void prop() {
        for (auto x: toUpd) m[x[1]] = 0;
        int co = 0; for (auto& a: m) a.s = ++co;
        bit.resize(sz(m)+1);
        
        sort(all(toUpd)), sort(all(toQuery));
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};

int N,M,group[MX],ans[100001];
vi member[MX];
cd pos[MX], h[2];
pd POS[MX];
pair<pd,pd> BOUND[MX];
vpi query[MX], query2[MX];

void process1(int x) {
    BIT z; array<int,MX> co; co.fill(0);
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+2*M_PIl,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}

void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}

void process(int x) {
    if ((ll)sz(query[x])*sz(member[x]) >= N) process1(x);
    else process2(x);
}

void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    F0R(i,2) cin >> h[i];
    FOR(i,1,N+1) {
        POS[i].f = arg(pos[i]-h[0]);
        POS[i].s = arg(pos[i]-h[1]);
        if (area(h[0],h[1],pos[i]) > 0) BOUND[i] = {{POS[i].f-M_PIl,POS[i].f},{POS[i].s,POS[i].s+M_PIl}};
        else BOUND[i] = {{POS[i].f,POS[i].f+M_PIl},{POS[i].s-M_PIl,POS[i].s}};
        nor(BOUND[i].f); nor(BOUND[i].s);
        // cout << i << " " << POS[i].f << " " << POS[i].s << " " << BOUND[i].f.f << " " << BOUND[i].f.s << " " << BOUND[i].s.f << " " << BOUND[i].s.s << "\n";
    }
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    FOR(i,1,M+1) {
        BIT z;
        for (auto a: query2[i]) for (int b: member[a.f]) {
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+2*M_PIl,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1});
        }
        z.prop();
    }
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# Verdict Execution time Memory Grader output
1 Correct 21 ms 4088 KB Output is correct
2 Correct 40 ms 4688 KB Output is correct
3 Correct 232 ms 4688 KB Output is correct
4 Correct 429 ms 7080 KB Output is correct
5 Correct 147 ms 8620 KB Output is correct
6 Correct 13 ms 8620 KB Output is correct
7 Correct 14 ms 8620 KB Output is correct
8 Correct 18 ms 8620 KB Output is correct
9 Correct 16 ms 8620 KB Output is correct
10 Correct 14 ms 8620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 215 ms 19400 KB Output is correct
2 Correct 501 ms 24884 KB Output is correct
3 Correct 198 ms 24884 KB Output is correct
4 Correct 98 ms 24884 KB Output is correct
5 Correct 69 ms 24884 KB Output is correct
6 Correct 151 ms 24884 KB Output is correct
7 Correct 173 ms 24884 KB Output is correct
8 Correct 175 ms 24884 KB Output is correct
9 Correct 150 ms 25048 KB Output is correct
10 Correct 141 ms 25456 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 21 ms 4088 KB Output is correct
2 Correct 40 ms 4688 KB Output is correct
3 Correct 232 ms 4688 KB Output is correct
4 Correct 429 ms 7080 KB Output is correct
5 Correct 147 ms 8620 KB Output is correct
6 Correct 13 ms 8620 KB Output is correct
7 Correct 14 ms 8620 KB Output is correct
8 Correct 18 ms 8620 KB Output is correct
9 Correct 16 ms 8620 KB Output is correct
10 Correct 14 ms 8620 KB Output is correct
11 Correct 215 ms 19400 KB Output is correct
12 Correct 501 ms 24884 KB Output is correct
13 Correct 198 ms 24884 KB Output is correct
14 Correct 98 ms 24884 KB Output is correct
15 Correct 69 ms 24884 KB Output is correct
16 Correct 151 ms 24884 KB Output is correct
17 Correct 173 ms 24884 KB Output is correct
18 Correct 175 ms 24884 KB Output is correct
19 Correct 150 ms 25048 KB Output is correct
20 Correct 141 ms 25456 KB Output is correct
21 Correct 205 ms 26144 KB Output is correct
22 Correct 473 ms 31544 KB Output is correct
23 Correct 3042 ms 31544 KB Output is correct
24 Execution timed out 4034 ms 31544 KB Time limit exceeded
25 Halted 0 ms 0 KB -