Submission #69393

# Submission time Handle Problem Language Result Execution time Memory
69393 2018-08-20T18:34:15 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
974 ms 263168 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
namespace geo {
    template<class T> istream& operator>> (istream& is, complex<T>& p) {
        T value;
        is >> value; p.real(value);
        is >> value; p.imag(value);
        return is;
    }
    void nor(pd& x) { if (x.f < -M_PIl) x.f += 2*M_PIl, x.s += 2*M_PIl; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
}

using namespace geo;

struct BIT {
    vector<array<ld,3>> toUpd;
    vector<pair<array<ld,3>,int*>> toQuery;
    map<ld,int> m;
    vi bit;
    
    void upd(ld x, int y) {
        // cout << "OOPS " << x << " " << y << "\n";
        for (int X = m[x]; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(ld x, int y, int* z) {
        int t = 0;
        auto it = m.ub(x);
        // cout << z << "\n";
        for (int X = (it == m.begin() ? 0 : prev(it)->s); X; X -= (X&-X)) {
            (*z) += y*bit[X];
            t += y*bit[X];
        }
        // cout << "HUH " << x << " " << y << " " << t << " " << z << "\n";
    }
    
    void prop() {
        for (auto x: toUpd) m[x[1]] = 0;
        int co = 0; for (auto& a: m) a.s = ++co;
        bit.resize(sz(m)+1);
        
        sort(all(toUpd)), sort(all(toQuery));
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};

int N,M,group[MX],ans[100001];
vi member[MX];
cd pos[MX], h[2];
pd POS[MX];
pair<pd,pd> BOUND[MX];
vpi query[MX];
BIT z[MX];

void process1(int x) {
    BIT z; array<int,MX> co; co.fill(0);
    // cout << "OH " << x << "\n";
    for (int a: member[x]) {
        // cout << "HA " << a << "\n";
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+2*M_PIl,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1},&co[group[a]]});
    }
    z.prop(); 
    /*cout << "FINAL\n";
    FOR(i,1,M+1) cout << co[i] << " ";
    cout << "\n";*/
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
    // exit(0);
}

void process2(int x) {
    for (auto a: query[x]) for (int b: member[x]) {
        z[a.f].toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
        z[a.f].toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
        z[a.f].toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
        z[a.f].toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
    }
}

void process(int x) {
    //process1(x);
    if ((ll)sz(query[x])*sz(member[x]) >= N) process1(x);
    else process2(x);
}

void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    F0R(i,2) cin >> h[i];
    FOR(i,1,N+1) {
        POS[i].f = arg(pos[i]-h[0]);
        POS[i].s = arg(pos[i]-h[1]);
        if (area(h[0],h[1],pos[i]) > 0) BOUND[i] = {{POS[i].f-M_PIl,POS[i].f},{POS[i].s,POS[i].s+M_PIl}};
        else BOUND[i] = {{POS[i].f,POS[i].f+M_PIl},{POS[i].s-M_PIl,POS[i].s}};
        nor(BOUND[i].f); nor(BOUND[i].s);
        // cout << i << " " << POS[i].f << " " << POS[i].s << " " << BOUND[i].f.f << " " << BOUND[i].f.s << " " << BOUND[i].s.f << " " << BOUND[i].s.s << "\n";
    }
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    FOR(i,1,M+1) {
        for (int a: member[i]) {
            z[i].toUpd.pb({POS[a].f,POS[a].s,1});
            z[i].toUpd.pb({POS[a].f+2*M_PIl,POS[a].s,1});
            z[i].toUpd.pb({POS[a].f,POS[a].s+2*M_PIl,1});
            z[i].toUpd.pb({POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1});
        }
        z[i].prop();
    }
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# Verdict Execution time Memory Grader output
1 Correct 24 ms 7292 KB Output is correct
2 Correct 48 ms 11044 KB Output is correct
3 Correct 299 ms 46500 KB Output is correct
4 Correct 546 ms 118496 KB Output is correct
5 Correct 204 ms 118496 KB Output is correct
6 Correct 15 ms 118496 KB Output is correct
7 Correct 15 ms 118496 KB Output is correct
8 Correct 20 ms 118496 KB Output is correct
9 Correct 18 ms 118496 KB Output is correct
10 Correct 17 ms 118496 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 177 ms 118496 KB Output is correct
2 Correct 489 ms 118496 KB Output is correct
3 Correct 145 ms 118496 KB Output is correct
4 Correct 94 ms 118496 KB Output is correct
5 Correct 83 ms 118496 KB Output is correct
6 Correct 176 ms 118496 KB Output is correct
7 Correct 156 ms 118496 KB Output is correct
8 Correct 166 ms 118496 KB Output is correct
9 Correct 151 ms 118496 KB Output is correct
10 Correct 128 ms 118496 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 24 ms 7292 KB Output is correct
2 Correct 48 ms 11044 KB Output is correct
3 Correct 299 ms 46500 KB Output is correct
4 Correct 546 ms 118496 KB Output is correct
5 Correct 204 ms 118496 KB Output is correct
6 Correct 15 ms 118496 KB Output is correct
7 Correct 15 ms 118496 KB Output is correct
8 Correct 20 ms 118496 KB Output is correct
9 Correct 18 ms 118496 KB Output is correct
10 Correct 17 ms 118496 KB Output is correct
11 Correct 177 ms 118496 KB Output is correct
12 Correct 489 ms 118496 KB Output is correct
13 Correct 145 ms 118496 KB Output is correct
14 Correct 94 ms 118496 KB Output is correct
15 Correct 83 ms 118496 KB Output is correct
16 Correct 176 ms 118496 KB Output is correct
17 Correct 156 ms 118496 KB Output is correct
18 Correct 166 ms 118496 KB Output is correct
19 Correct 151 ms 118496 KB Output is correct
20 Correct 128 ms 118496 KB Output is correct
21 Correct 208 ms 118496 KB Output is correct
22 Correct 520 ms 118496 KB Output is correct
23 Runtime error 974 ms 263168 KB Execution killed with signal 9 (could be triggered by violating memory limits)
24 Halted 0 ms 0 KB -