Submission #684875

# Submission time Handle Problem Language Result Execution time Memory
684875 2023-01-22T18:06:17 Z peijar Constellation 3 (JOI20_constellation3) C++17
100 / 100
183 ms 124732 KB
#include <bits/stdc++.h>
#define int long long
using namespace std;

string to_string(string s) { return s; }
template <typename T> string to_string(T v) {
  bool first = true;
  string res = "[";
  for (const auto &x : v) {
    if (!first)
      res += ", ";
    first = false;
    res += to_string(x);
  }
  res += "]";
  return res;
}

void dbg_out() { cout << endl; }
template <typename Head, typename... Tail> void dbg_out(Head H, Tail... T) {
  cout << ' ' << to_string(H);
  dbg_out(T...);
}

#ifdef DEBUG
#define dbg(...) cout << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__)
#else
#define dbg(...)
#endif

inline char gc() { // like getchar()
  static char buf[1 << 16];
  static size_t bc, be;
  if (bc >= be) {
    buf[0] = 0, bc = 0;
    be = fread(buf, 1, sizeof(buf), stdin);
  }
  return buf[bc++]; // returns 0 on EOF
}

int readInt() {
  int a, c;
  while ((a = gc()) < 40)
    ;
  if (a == '-')
    return -readInt();
  while ((c = gc()) >= 48)
    a = a * 10 + c - 480;
  return a - 48;
}

template <class T> struct RMQ {
  vector<vector<T>> jmp;
  RMQ(const vector<T> &V) : jmp(1, V) {
    for (int pw = 1, k = 1; pw * 2 <= (int)V.size(); pw *= 2, ++k) {
      jmp.emplace_back((int)V.size() - pw * 2 + 1);
      for (int j = 0; j < (int)jmp[k].size(); ++j)
        jmp[k][j] = max(jmp[k - 1][j], jmp[k - 1][j + pw]);
    }
  }
  T query(int a, int b) { // [a, b)
    assert(a < b);
    int dep = 31 - __builtin_clz(b - a);
    return max(jmp[dep][a], jmp[dep][b - (1 << dep)]);
  }
};

template <class T> class Fenwick {
public:
  int lim;
  vector<T> bit;

  Fenwick(int n) : lim(n + 1), bit(lim) {}

  void upd(int pos, T val) {
    for (pos++; pos < lim; pos += pos & -pos)
      bit[pos] += val;
  }

  T sum(int r) { // < r
    T ret = 0;
    for (; r; r -= r & -r)
      ret += bit[r];
    return ret;
  }

  T sum(int l, int r) { // [l, r)
    return sum(r) - sum(l);
  }

  void rangeAdd(int deb, int fin, int x) { // [deb, fin)
    dbg(deb, fin, x);
    upd(deb, x);
    upd(fin, -x);
  }

  int point(int pos) { return sum(pos + 1); }
};

template <class T> using min_pq = priority_queue<T, vector<T>, greater<T>>;

vector<vector<pair<int, int>>> onPos;
RMQ<pair<int, int>> rmq({});
Fenwick<int> fen(0);

pair<min_pq<tuple<int, int, int>>, int> dfs(int deb, int fin, int prevHeight) {
  auto [valMax, posMax] = rmq.query(deb, fin);
  min_pq<tuple<int, int, int>> toProcess;
  for (auto [y, c] : onPos[posMax])
    toProcess.emplace(y, posMax, c);

  int solFree = 0;
  int addL = 0, addR = 0;
  if (deb < posMax) {
    auto [toAdd, freeL] = dfs(deb, posMax, valMax);
    if (toAdd.size() > toProcess.size())
      toAdd.swap(toProcess);
    while (!toAdd.empty()) {
      toProcess.emplace(toAdd.top());
      toAdd.pop();
    }
    addL = freeL;
    solFree += freeL;
  }
  if (posMax + 1 < fin) {
    auto [toAdd, freeR] = dfs(posMax + 1, fin, valMax);
    if (toAdd.size() > toProcess.size())
      toAdd.swap(toProcess);
    while (!toAdd.empty()) {
      toProcess.emplace(toAdd.top());
      toAdd.pop();
    }
    addR = freeR;
    solFree += freeR;
  }
  fen.rangeAdd(posMax, fin, addL);
  fen.rangeAdd(deb, posMax + 1, addR);

  while (!toProcess.empty() and get<0>(toProcess.top()) <= prevHeight) {
    auto [y, x, c] = toProcess.top();
    toProcess.pop();
    int gain = c + fen.point(x);
    dbg(x, y, gain, fen.point(x));
    solFree = max(solFree, gain);
  }
  dbg(deb, fin, solFree);
  return pair(move(toProcess), solFree);
}

signed main(void) {
  ios_base::sync_with_stdio(false);
  cin.tie(0);

  int N = readInt();
  vector<int> height(N);
  for (int &x : height)
    x = readInt();
  vector<pair<int, int>> toRMQ;
  for (int i = 0; i < N; ++i)
    toRMQ.emplace_back(height[i], i);
  onPos.resize(N);
  rmq = RMQ(toRMQ);

  int nbEtoiles = readInt();
  int totCost = 0;
  for (int i = 0; i < nbEtoiles; ++i) {
    int x = readInt(), y = readInt(), c = readInt();
    totCost += c;
    onPos[x - 1].emplace_back(y, c);
  }
  fen = Fenwick<int>(N);

  cout << totCost - dfs(0, N, 1e18).second << endl;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 0 ms 340 KB Output is correct
6 Correct 0 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 0 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 0 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 0 ms 340 KB Output is correct
6 Correct 0 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 0 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 0 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 1 ms 724 KB Output is correct
24 Correct 1 ms 724 KB Output is correct
25 Correct 1 ms 724 KB Output is correct
26 Correct 1 ms 724 KB Output is correct
27 Correct 1 ms 724 KB Output is correct
28 Correct 1 ms 724 KB Output is correct
29 Correct 1 ms 724 KB Output is correct
30 Correct 1 ms 852 KB Output is correct
31 Correct 1 ms 724 KB Output is correct
32 Correct 1 ms 1236 KB Output is correct
33 Correct 2 ms 1108 KB Output is correct
34 Correct 2 ms 980 KB Output is correct
35 Correct 1 ms 980 KB Output is correct
36 Correct 2 ms 1108 KB Output is correct
37 Correct 2 ms 1108 KB Output is correct
38 Correct 2 ms 1364 KB Output is correct
39 Correct 2 ms 852 KB Output is correct
40 Correct 2 ms 1236 KB Output is correct
41 Correct 2 ms 852 KB Output is correct
42 Correct 1 ms 852 KB Output is correct
43 Correct 2 ms 1236 KB Output is correct
44 Correct 2 ms 852 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 0 ms 340 KB Output is correct
6 Correct 0 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 0 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 0 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 1 ms 724 KB Output is correct
24 Correct 1 ms 724 KB Output is correct
25 Correct 1 ms 724 KB Output is correct
26 Correct 1 ms 724 KB Output is correct
27 Correct 1 ms 724 KB Output is correct
28 Correct 1 ms 724 KB Output is correct
29 Correct 1 ms 724 KB Output is correct
30 Correct 1 ms 852 KB Output is correct
31 Correct 1 ms 724 KB Output is correct
32 Correct 1 ms 1236 KB Output is correct
33 Correct 2 ms 1108 KB Output is correct
34 Correct 2 ms 980 KB Output is correct
35 Correct 1 ms 980 KB Output is correct
36 Correct 2 ms 1108 KB Output is correct
37 Correct 2 ms 1108 KB Output is correct
38 Correct 2 ms 1364 KB Output is correct
39 Correct 2 ms 852 KB Output is correct
40 Correct 2 ms 1236 KB Output is correct
41 Correct 2 ms 852 KB Output is correct
42 Correct 1 ms 852 KB Output is correct
43 Correct 2 ms 1236 KB Output is correct
44 Correct 2 ms 852 KB Output is correct
45 Correct 127 ms 68552 KB Output is correct
46 Correct 124 ms 67572 KB Output is correct
47 Correct 130 ms 66476 KB Output is correct
48 Correct 126 ms 68540 KB Output is correct
49 Correct 117 ms 65908 KB Output is correct
50 Correct 126 ms 66116 KB Output is correct
51 Correct 128 ms 66236 KB Output is correct
52 Correct 132 ms 67732 KB Output is correct
53 Correct 119 ms 67736 KB Output is correct
54 Correct 182 ms 111912 KB Output is correct
55 Correct 168 ms 100772 KB Output is correct
56 Correct 163 ms 95000 KB Output is correct
57 Correct 163 ms 90592 KB Output is correct
58 Correct 160 ms 100452 KB Output is correct
59 Correct 160 ms 100068 KB Output is correct
60 Correct 109 ms 124732 KB Output is correct
61 Correct 178 ms 70936 KB Output is correct
62 Correct 182 ms 114452 KB Output is correct
63 Correct 167 ms 69564 KB Output is correct
64 Correct 164 ms 67588 KB Output is correct
65 Correct 183 ms 115736 KB Output is correct
66 Correct 169 ms 69732 KB Output is correct