Submission #674359

# Submission time Handle Problem Language Result Execution time Memory
674359 2022-12-23T18:40:41 Z tibinyte Cats or Dogs (JOI18_catdog) C++17
100 / 100
607 ms 40356 KB
#include <bits/stdc++.h>
#include "catdog.h"
using namespace std;
const int inf = 1e5;

struct node
{
  int dp[2][2];
  node()
  {
    for (int i = 0; i < 2; ++i)
    {
      for (int j = 0; j < 2; ++j)
      {
        dp[i][j] = inf;
      }
    }
  }
};

struct aint
{
  vector<node> a;
  void init(int n)
  {
    a = vector<node>(4 * n);
  }
  node combine(node a, node b)
  {
    node c;
    for (int i = 0; i < 2; ++i)
    {
      for (int j = 0; j < 2; ++j)
      {
        for (int k = 0; k < 2; ++k)
        {
          for (int l = 0; l < 2; ++l)
          {
            c.dp[i][j] = min(c.dp[i][j], a.dp[i][k] + b.dp[l][j] + (k != l));
          }
        }
      }
    }
    return c;
  }
  void update(int node, int left, int right, int pos, pair<int, int> val)
  {
    if (left == right)
    {
      a[node].dp[0][0] = val.first;
      a[node].dp[1][1] = val.second;
      a[node].dp[0][1] = inf;
      a[node].dp[1][0] = inf;
      return;
    }
    int mid = (left + right) / 2;
    if (pos <= mid)
    {
      update(2 * node, left, mid, pos, val);
    }
    else
    {
      update(2 * node + 1, mid + 1, right, pos, val);
    }
    a[node] = combine(a[2 * node], a[2 * node + 1]);
  }
  node query(int node, int left, int right, int st, int dr)
  {
    if (st <= left && dr >= right)
    {
      return a[node];
    }
    int mid = (left + right) / 2;
    if (st <= mid && mid + 1 <= dr)
    {
      return combine(query(2 * node, left, mid, st, dr), query(2 * node + 1, mid + 1, right, st, dr));
    }
    if (st <= mid)
    {
      return query(2 * node, left, mid, st, dr);
    }
    return query(2 * node + 1, mid + 1, right, st, dr);
  }
};

int n;

vector<int> a;

vector<vector<int>> g;

vector<int> heavy, pos, head, par, down;

vector<vector<int>> sum, prv;

aint tree;

int p = 0;
void init_hld()
{
  pos = head = par = down = vector<int>(n + 1);
  heavy = vector<int>(n + 1, -1);
  function<int(int, int)> dfs = [&](int node, int parent)
  {
    int sz = 1;
    int maxi = 0;
    for (auto i : g[node])
    {
      if (i != parent)
      {
        int cine = dfs(i, node);
        sz += cine;
        if (cine > maxi)
        {
          maxi = cine;
          heavy[node] = i;
        }
      }
    }
    return sz;
  };
  dfs(1, 0);
  function<void(int, int, int)> get = [&](int node, int boss, int parent)
  {
    par[node] = parent;
    head[node] = boss;
    pos[node] = ++p;
    down[head[node]] = node;
    if (heavy[node] != -1)
    {
      get(heavy[node], boss, node);
    }
    for (auto i : g[node])
    {
      if (i != parent && i != heavy[node])
      {
        get(i, i, node);
      }
    }
  };
  get(1, 1, 0);
}

void initialize(int N, vector<int> A, vector<int> B)
{
  n = N;
  g = vector<vector<int>>(n + 1);
  a = vector<int>(n + 1, 2);
  prv = sum = vector<vector<int>>(n + 1, vector<int>(2));
  for (int i = 0; i <= n - 2; ++i)
  {
    g[A[i]].push_back(B[i]);
    g[B[i]].push_back(A[i]);
  }
  init_hld();
  tree.init(n);
  for (int i = 1; i <= n; ++i)
  {
    tree.update(1, 1, n, i, {0, 0});
  }
}
node update(int nd)
{
  if (a[nd] == 0)
  {
    tree.update(1, 1, n, pos[nd], {sum[nd][0], inf});
  }
  if (a[nd] == 1)
  {
    tree.update(1, 1, n, pos[nd], {inf, sum[nd][1]});
  }
  if (a[nd] == 2)
  {
    tree.update(1, 1, n, pos[nd], {sum[nd][0], sum[nd][1]});
  }
  int qui = head[nd];
  node dp_qui = tree.query(1, 1, n, pos[qui], pos[down[qui]]);
  if (qui == 1)
  {
    return dp_qui;
  }
  for (int i = 0; i < 2; ++i)
  {
    sum[par[qui]][i] -= prv[qui][i];
    int best = inf;
    for (int j = 0; j < 2; ++j)
    {
      best = min(best, dp_qui.dp[i][j]);
      best = min(best, dp_qui.dp[i ^ 1][j] + 1);
    }
    prv[qui][i] = best;
    sum[par[qui]][i] += prv[qui][i];
  }
  return update(par[qui]);
}

int cat(int v)
{
  a[v] = 0;
  node ans = update(v);
  int best = inf;
  for (int i = 0; i < 2; ++i)
  {
    for (int j = 0; j < 2; ++j)
    {
      best = min(best, ans.dp[i][j]);
    }
  }
  return best;
}

int dog(int v)
{
  a[v] = 1;
  node ans = update(v);
  int best = inf;
  for (int i = 0; i < 2; ++i)
  {
    for (int j = 0; j < 2; ++j)
    {
      best = min(best, ans.dp[i][j]);
    }
  }
  return best;
}

int neighbor(int v)
{
  a[v] = 2;
  node ans = update(v);
  int best = inf;
  for (int i = 0; i < 2; ++i)
  {
    for (int j = 0; j < 2; ++j)
    {
      best = min(best, ans.dp[i][j]);
    }
  }
  return best;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 2 ms 468 KB Output is correct
18 Correct 2 ms 468 KB Output is correct
19 Correct 2 ms 512 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 2 ms 468 KB Output is correct
24 Correct 2 ms 468 KB Output is correct
25 Correct 2 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 1 ms 468 KB Output is correct
29 Correct 2 ms 596 KB Output is correct
30 Correct 2 ms 340 KB Output is correct
31 Correct 1 ms 468 KB Output is correct
32 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 2 ms 468 KB Output is correct
18 Correct 2 ms 468 KB Output is correct
19 Correct 2 ms 512 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 2 ms 468 KB Output is correct
24 Correct 2 ms 468 KB Output is correct
25 Correct 2 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 1 ms 468 KB Output is correct
29 Correct 2 ms 596 KB Output is correct
30 Correct 2 ms 340 KB Output is correct
31 Correct 1 ms 468 KB Output is correct
32 Correct 1 ms 340 KB Output is correct
33 Correct 313 ms 14564 KB Output is correct
34 Correct 137 ms 18516 KB Output is correct
35 Correct 262 ms 11224 KB Output is correct
36 Correct 483 ms 26716 KB Output is correct
37 Correct 31 ms 8652 KB Output is correct
38 Correct 544 ms 29808 KB Output is correct
39 Correct 607 ms 29812 KB Output is correct
40 Correct 540 ms 29828 KB Output is correct
41 Correct 536 ms 29812 KB Output is correct
42 Correct 491 ms 29824 KB Output is correct
43 Correct 524 ms 29856 KB Output is correct
44 Correct 491 ms 29828 KB Output is correct
45 Correct 498 ms 29780 KB Output is correct
46 Correct 523 ms 29820 KB Output is correct
47 Correct 527 ms 29756 KB Output is correct
48 Correct 178 ms 21392 KB Output is correct
49 Correct 234 ms 27124 KB Output is correct
50 Correct 60 ms 5800 KB Output is correct
51 Correct 76 ms 10700 KB Output is correct
52 Correct 34 ms 5620 KB Output is correct
53 Correct 248 ms 28452 KB Output is correct
54 Correct 172 ms 12388 KB Output is correct
55 Correct 423 ms 20600 KB Output is correct
56 Correct 245 ms 13688 KB Output is correct
57 Correct 352 ms 26248 KB Output is correct
58 Correct 46 ms 12156 KB Output is correct
59 Correct 68 ms 9716 KB Output is correct
60 Correct 168 ms 24080 KB Output is correct
61 Correct 192 ms 25148 KB Output is correct
62 Correct 119 ms 20272 KB Output is correct
63 Correct 69 ms 19148 KB Output is correct
64 Correct 77 ms 22272 KB Output is correct
65 Correct 113 ms 35592 KB Output is correct
66 Correct 78 ms 8416 KB Output is correct
67 Correct 98 ms 24912 KB Output is correct
68 Correct 203 ms 36016 KB Output is correct
69 Correct 32 ms 3020 KB Output is correct
70 Correct 7 ms 596 KB Output is correct
71 Correct 78 ms 15904 KB Output is correct
72 Correct 116 ms 29140 KB Output is correct
73 Correct 251 ms 40356 KB Output is correct
74 Correct 288 ms 35372 KB Output is correct
75 Correct 214 ms 40240 KB Output is correct
76 Correct 192 ms 38604 KB Output is correct
77 Correct 286 ms 35884 KB Output is correct