Submission #674240

#TimeUsernameProblemLanguageResultExecution timeMemory
674240SamrevSjeckanje (COCI21_sjeckanje)C++14
110 / 110
491 ms36160 KiB
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> using namespace std; using namespace __gnu_pbds; typedef long long int lli; typedef long double lld; typedef priority_queue <lli , vector<lli>, greater<lli> > min_heap; typedef priority_queue <lli> max_heap; typedef pair<lli, lli> ii; typedef vector<ii> vii; typedef vector<lli> vi; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; const lli M = 1e9 + 7; const lli M1 = 0; const lli M2 = 1000000000000000001; lli mod(lli x){ return (x%M);} lli mod_minus(lli a, lli b){ lli ans= (mod(a)-mod(b)); if(ans<0) ans=mod(ans+M); return ans;} lli mod_mul(lli a,lli b){ return mod(mod(a)*mod(b));} lli mod_add(lli a,lli b){ return mod(mod(a)+mod(b));} #define FOR(i,l,u) for(int i=l;i<=u;i++) #define FAST ios_base :: sync_with_stdio (false); cin.tie (NULL) #define All(A) A.begin(),A.end() #define isPowerOfTwo(x) (x && (!(x&(x-1)))) #define LSOne(S) (S & (-S)) #define set_count(i) __builtin_popcount(i) lli gcd(lli a, lli b) { return b == 0 ? a : gcd(b, a % b); } lli lcm(lli a, lli b) { return a * (b / gcd(a, b)); } lli phi(lli n) { lli result = n; for (lli i = 2; i * i <= n; i++) { if (n % i == 0) { while (n % i == 0) n /= i; result -= result / i; } } if (n > 1) result -= result / n; return result; } lli ceill(lli a,lli b) { if(a%b==0) return a/b; else return a/b +1; } lli extendted_gcd(lli a ,lli b,lli &x,lli &y){ if(a==0){ x=0;y=1;return b;} lli x1,y1,ans = extendted_gcd(b%a,a,x1,y1); x = y1-(b/a)*x1;y = x1; return ans; } lli power_mod(lli a,lli b,lli m) { lli ans =1; while(b!=0) { if(b%2==1) ans=(ans*a)%m; a=a*a; a%=m; b/=2; } return ans; } lli mod_inverse(lli a,lli m) { return power_mod(a,m-2,m); } void mod_inverse_array(lli inv[],lli u,lli m) { inv[1]=1; FOR(i,2,u){ inv[i]=((-(m/i)*inv[m%i]%m)+m)%m; } } lli N_C_r_mod_m(lli N,lli r , vector<lli> factorial) { lli a = factorial[N],b = mod_inverse(factorial[N-r],M),c = mod_inverse(factorial[r],M); return mod_mul(a,mod_mul(b,c)); } void prime_factorization(lli n,unordered_map<lli,lli> &m) { lli i=2; while(n%i==0) { m[i]++; n=n/i; } for(i=3;i*i<=n;i+=2) { while(n%i==0) { m[i]++; n=n/i; } } if(n!=1) m[n]++; } void linear_sieve(vector<lli> &pr,vector<lli> &lp,lli N) { for (lli i=2; i<=N; ++i) { if (lp[i] == 0) { lp[i] = i; pr.push_back (i); } for (lli j=0; j<(lli)pr.size() && pr[j]<=lp[i] && i*pr[j]<=N; ++j) lp[i * pr[j]] = pr[j]; } } lli eval_poly(vector<lli> coeff , lli x){ lli degree = coeff.size(); //coeff are as 0,1,2----n degree--; lli ans = 0; for(lli i = degree ; i>=0 ; i--){ ans = (x*ans + coeff[i]); } return ans; } lli derivative_poly(vector<lli> coeff , lli x){ lli degree = coeff.size(); //coeff are as 0,1,2----n degree--; lli ans = 0; lli pow = 1; for(lli i = 1; i<=degree;i++){ ans+=(i*pow*coeff[i]); pow*=x; } return ans; } int t = 1; int n , q; struct item{ lli NN,NY,YN,YY,L,R; }; vector<lli> D; vector<item> values; struct item ZERO = {0,0,0,0,0,0}; int sizer = 1; item single(lli i){ return { NN : 0, NY : 0, YN : 0, YY : abs(i), L : i, R : i }; } lli check(item a, item b){ return (a.R*b.L)>0; } lli maxi(lli a, lli b, lli c, lli d){ return max(a , max(b , max(c , d))); } item merge(item a , item b){ return{ NN : maxi(a.NN + b.NN , a.NN + b.YN , a.NY + b.NN , check(a,b)*(a.NY + b.YN) ), NY : maxi(a.NN + b.NY , a.NN + b.YY , a.NY + b.NY , check(a,b)*(a.NY + b.YY) ), YN : maxi(a.YN + b.NN , a.YN + b.YN , a.YY + b.NN , check(a,b)*(a.YY + b.YN) ), YY : maxi(a.YN + b.NY , a.YN + b.YY , a.YY + b.NY , check(a,b)*(a.YY + b.YY) ), L : a.L, R : b.R }; } void build(vector<lli> &D , lli x=0,lli lx = 0 ,lli rx = sizer){ if((rx - lx)<=1){ if(lx<D.size()){ values[x] = single(D[lx]); } return; } lli m = lx + (rx - lx)/2; build(D,2*x + 1, lx , m); build(D , 2*x + 2, m , rx); values[x] = merge(values[2*x + 1], values[2*x + 2]); } void update(lli i , lli v , lli x = 0 , lli lx = 0 , lli rx = sizer){ if((rx - lx)<=1){ values[x] = single(v + values[x].L); return; } lli m = lx + (rx - lx)/2; if(i<m) update(i,v,2*x + 1,lx , m); else update(i , v, 2*x + 2, m , rx); values[x] = merge(values[2*x +1], values[2*x + 2]); } void solve(){ cin>>n>>q; while(sizer < (n-1)) sizer*=2; values.resize(2*sizer); lli a,b; D.resize(n-1); cin>>a; FOR(i,0,n-2){ cin>>b; D[i] = b-a; swap(a,b); } build(D); FOR(i,1,q){ lli l , r, v; cin>>l>>r>>v; l--,r--; if(l>0) update(l-1,v); if(r<D.size()) update(r,-v); cout<<values[0].YY<<"\n"; } } int main() { FAST; // g++ -o output prac.cpp // .\output // cin>>t; // freopen("optmilk.in","r",stdin); // freopen("optmilk.out","w",stdout); while(t--){ solve(); } return 0; }

Compilation message (stderr)

Main.cpp: In function 'void build(std::vector<long long int>&, lli, lli, lli)':
Main.cpp:183:14: warning: comparison of integer expressions of different signedness: 'lli' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  183 |         if(lx<D.size()){
      |            ~~^~~~~~~~~
Main.cpp: In function 'void solve()':
Main.cpp:225:13: warning: comparison of integer expressions of different signedness: 'lli' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  225 |         if(r<D.size()) update(r,-v);
      |            ~^~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...