Submission #672647

#TimeUsernameProblemLanguageResultExecution timeMemory
672647ForestedI want to be the very best too! (NOI17_pokemonmaster)C++17
100 / 100
956 ms148716 KiB
#ifndef LOCAL #define FAST_IO #endif // ============ #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cmath> #include <iomanip> #include <iostream> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <tuple> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i) #define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i) #define ALL(x) begin(x), end(x) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using u128 = __uint128_t; using i32 = signed int; using i64 = signed long long; using i128 = __int128_t; using f64 = double; using f80 = long double; template <typename T> using Vec = vector<T>; template <typename T> bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template <typename T> bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } istream &operator>>(istream &is, i128 &x) { i64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, i128 x) { os << (i64) x; return os; } istream &operator>>(istream &is, u128 &x) { u64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, u128 x) { os << (u64) x; return os; } [[maybe_unused]] constexpr i32 INF = 1000000100; [[maybe_unused]] constexpr i64 INF64 = 3000000000000000100; struct SetUpIO { SetUpIO() { #ifdef FAST_IO ios::sync_with_stdio(false); cin.tie(nullptr); #endif cout << fixed << setprecision(15); } } set_up_io; // ============ #ifdef DEBUGF #else #define DBG(x) (void)0 #endif // ============ #include <limits> #include <utility> template <typename T> struct Add { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs + rhs; } static Value inv(const Value &x) { return -x; } }; template <typename T> struct Mul { using Value = T; static Value id() { return Value(1); } static Value op(const Value &lhs, const Value &rhs) { return lhs * rhs; } static Value inv(const Value &x) { return Value(1) / x; } }; template <typename T> struct Min { using Value = T; static Value id() { return std::numeric_limits<T>::max(); } static Value op(const Value &lhs, const Value &rhs) { return std::min(lhs, rhs); } }; template <typename T> struct Max { using Value = T; static Value id() { return std::numeric_limits<Value>::min(); } static Value op(const Value &lhs, const Value &rhs) { return std::max(lhs, rhs); } }; template <typename T> struct Xor { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs ^ rhs; } static Value inv(const Value &x) { return x; } }; template <typename Monoid> struct Reversible { using Value = std::pair<typename Monoid::Value, typename Monoid::Value>; static Value id() { return Value(Monoid::id(), Monoid::id()); } static Value op(const Value &v1, const Value &v2) { return Value( Monoid::op(v1.first, v2.first), Monoid::op(v2.second, v1.second)); } }; // ============ // ============ #include <cassert> template <typename Monoid> class SparseSegmentTree { public: using Value = typename Monoid::Value; using Index = long long; private: struct Node { Node *lft; Node *rgt; Value prod; Node(Value v) : lft(nullptr), rgt(nullptr), prod(v) {} #ifdef LOCAL ~Node() { if (lft) { delete lft; } if (rgt) { delete rgt; } } #endif void update_prod() { if (!lft && !rgt) { prod = Monoid::id(); } else if (!lft) { prod = rgt->prod; } else if (!rgt) { prod = lft->prod; } else { prod = Monoid::op(lft->prod, rgt->prod); } } }; static Node *update(Node *cur, Index curl, Index curr, Index upd, Value v) { if (!cur) { cur = new Node(Monoid::id()); } if (curr - curl == 1) { cur->prod = v; } else { Index curm = (curl + curr) / 2; if (upd < curm) { cur->lft = update(cur->lft, curl, curm, upd, v); } else { cur->rgt = update(cur->rgt, curm, curr, upd, v); } cur->update_prod(); } return cur; } static Value prod(Node *cur, Index curl, Index curr, Index qryl, Index qryr) { if (!cur || curr <= qryl || qryr <= curl) { return Monoid::id(); } if (qryl <= curl && curr <= qryr) { return cur->prod; } Index curm = (curl + curr) / 2; Value pl = prod(cur->lft, curl, curm, qryl, qryr); Value pr = prod(cur->rgt, curm, curr, qryl, qryr); return Monoid::op(pl, pr); } Index lft; Index rgt; Node *root; public: SparseSegmentTree() : lft(0), rgt(1), root(nullptr) {} SparseSegmentTree(Index n) : lft(0), rgt(n), root(nullptr) { assert(n > 0); } SparseSegmentTree(Index l, Index r) : lft(l), rgt(r), root(nullptr) { assert(l < r); } void update(Index idx, Value v) { root = update(root, lft, rgt, idx, v); } Value prod(Index l, Index r) const { return prod(root, lft, rgt, l, r); } }; // ============ // ============ #include <algorithm> #include <cassert> #include <utility> #include <vector> class HeavyLightDecomposition { std::vector<int> siz; std::vector<int> par; std::vector<int> hea; std::vector<int> in; std::vector<int> out; std::vector<int> dep; std::vector<int> rev; template <typename G> void dfs1(G &g, int v) { if (!g[v].empty() && (int) g[v][0] == par[v]) { std::swap(g[v][0], g[v].back()); } for (auto &e : g[v]) { int u = (int)e; if (u != par[v]) { par[u] = v; dfs1(g, u); siz[v] += siz[u]; if (siz[u] > siz[(int) g[v][0]]) { std::swap(g[v][0], e); } } } } template <typename G> void dfs2(const G &g, int v, int &time) { in[v] = time; rev[time++] = v; for (auto &e : g[v]) { int u = (int)e; if (u == par[v]) { continue; } if (u == (int) g[v][0]) { hea[u] = hea[v]; } else { hea[u] = u; } dep[u] = dep[v] + 1; dfs2(g, u, time); } out[v] = time; } public: template <typename G> HeavyLightDecomposition(G &g, int root = 0) : siz(g.size(), 1), par(g.size(), root), hea(g.size(), root), in(g.size(), 0), out(g.size(), 0), dep(g.size(), 0), rev(g.size(), 0) { assert(root >= 0 && root < (int) g.size()); dfs1(g, root); int time = 0; dfs2(g, root, time); } int subtree_size(int v) const { assert(v >= 0 && v < (int) siz.size()); return siz[v]; } int parent(int v) const { assert(v >= 0 && v < (int) par.size()); return par[v]; } int in_time(int v) const { assert(v >= 0 && v < (int) in.size()); return in[v]; } int out_time(int v) const { assert(v >= 0 && v < (int) out.size()); return out[v]; } int depth(int v) const { assert(v >= 0 && v < (int) dep.size()); return dep[v]; } int time_to_vertex(int t) const { assert(t >= 0 && t < (int) rev.size()); return rev[t]; } int la(int v, int k) const { assert(v >= 0 && v < (int) dep.size()); assert(k >= 0); if (k > dep[v]) { return -1; } while (true) { int u = hea[v]; if (in[u] + k <= in[v]) { return rev[in[v] - k]; } k -= in[v] - in[u] + 1; v = par[u]; } return 0; } int forward(int v, int dst) const { assert(v >= 0 && v < (int) dep.size()); assert(dst >= 0 && dst < (int) dep.size()); assert(v != dst); int l = lca(v, dst); if (l == v) { return la(dst, dist(v, dst) - 1); } else { return par[v]; } } int lca(int u, int v) const { assert(u >= 0 && u < (int) dep.size()); assert(v >= 0 && v < (int) dep.size()); while (u != v) { if (in[u] > in[v]) { std::swap(u, v); } if (hea[u] == hea[v]) { v = u; } else { v = par[hea[v]]; } } return u; } int dist(int u, int v) const { assert(u >= 0 && u < (int) dep.size()); assert(v >= 0 && v < (int) dep.size()); return dep[u] + dep[v] - 2 * dep[lca(u, v)]; } std::vector<std::pair<int, int>> path(int u, int v, bool edge) const { assert(u >= 0 && u < (int) dep.size()); assert(v >= 0 && v < (int) dep.size()); std::vector<std::pair<int, int>> fromu, fromv; bool rev = false; while (true) { if (u == v && edge) { break; } if (in[u] > in[v]) { std::swap(u, v); std::swap(fromu, fromv); rev ^= true; } if (hea[u] == hea[v]) { fromv.emplace_back(in[v], in[u] + (int)edge); v = u; break; } else { fromv.emplace_back(in[v], in[hea[v]]); v = par[hea[v]]; } } if (rev) { std::swap(fromu, fromv); } std::reverse(fromv.begin(), fromv.end()); fromu.reserve(fromv.size()); for (auto [x, y] : fromv) { fromu.emplace_back(y, x); } return fromu; } int jump(int u, int v, int k) const { assert(u >= 0 && u < (int) dep.size()); assert(v >= 0 && v < (int) dep.size()); assert(k >= 0); int l = lca(u, v); int dis = dep[u] + dep[v] - 2 * dep[l]; if (k > dis) { return -1; } if (k <= dep[u] - dep[l]) { return la(u, k); } else { return la(v, dis - k); } } int meet(int u, int v, int w) const { return lca(u, v) ^ lca(v, w) ^ lca(w, u); } }; // ============ struct Converted { i32 n; Vec<Vec<i32>> tree; i32 rt; Vec<i32> a; i32 q; Vec<tuple<i32, i32, i32>> queries; // (0, v, x) or (1, v, -1) or (1, n, -1) }; Converted convert(i32 r, i32 c, i32 q, const Vec<Vec<i32>> &l, const Vec<Vec<i32>> &p, const Vec<tuple<i32, i32, i32, i32>> &queries) { Vec<i32> par(r * c, -1); auto find_root = [&](const auto &find_root, i32 v) -> i32 { if (par[v] == -1) { return v; } else { return par[v] = find_root(find_root, par[v]); } }; Vec<pair<i32, i32>> events; REP(i, q) { auto [ty, x, y, val] = queries[i]; if (ty == 1) { events.emplace_back(val, r * c + i); } } REP(i, r) REP(j, c) { events.emplace_back(l[i][j], i * c + j); } sort(ALL(events)); const i32 dx[] = {1, 0, -1, 0}, dy[] = {0, 1, 0, -1}; Vec<Vec<i32>> tree(r * c); Vec<tuple<i32, i32, i32>> qs(q, make_tuple(0, 0, 0)); for (auto [_, i] : events) { if (i < r * c) { i32 x = i / c; i32 y = i - x * c; REP(dir, 4) { i32 tx = x + dx[dir], ty = y + dy[dir]; if (tx >= 0 && tx < r && ty >= 0 && ty < c && l[x][y] > l[tx][ty]) { i32 tr = find_root(find_root, tx * c + ty); if (tr != x * c + y) { par[tr] = x * c + y; tree[x * c + y].emplace_back(tr); tree[tr].emplace_back(x * c + y); } } } } else { i -= r * c; auto [_ty, x, y, val] = queries[i]; if (val < l[x][y]) { qs[i] = make_tuple(1, r * c, -1); } else { i32 rt = find_root(find_root, x * c + y); qs[i] = make_tuple(1, rt, -1); } } } REP(i, q) { auto [ty, x, y, val] = queries[i]; if (ty == 0) { qs[i] = make_tuple(0, x * c + y, val); } } i32 mx_x = -1, mx_y = -1, mx = -1; REP(i, r) REP(j, c) { if (chmax(mx, l[i][j])) { mx_x = i; mx_y = j; } } Vec<i32> a; a.reserve(r * c); REP(i, r) REP(j, c) { a.push_back(p[i][j]); } return Converted{r * c, tree, mx_x * c + mx_y, a, q, qs}; } Vec<i32> solve(Converted prob) { HeavyLightDecomposition hld(prob.tree, prob.rt); i32 k = 0; REP(i, prob.n) { chmax(k, prob.a[i]); } for (auto [ty, x, y] : prob.queries) { if (ty == 0) { chmax(k, y); } } ++k; Vec<SparseSegmentTree<Add<i32>>> segs; segs.reserve(k); REP(i, k) { segs.emplace_back(SparseSegmentTree<Add<i32>>(prob.n + 1)); } SparseSegmentTree<Add<i32>> siz(prob.n + 1); auto add = [&](i32 v, i32 x) -> void { for (auto [l, r] : hld.path(prob.rt, v, false)) { ++r; segs[x].update(l, segs[x].prod(l, l + 1) + 1); segs[x].update(r, segs[x].prod(r, r + 1) - 1); } i32 dep = hld.depth(v); i32 ok = -1, ng = dep + 1; while (ng - ok > 1) { i32 mid = (ok + ng) / 2; i32 u = hld.la(v, mid); if (segs[x].prod(0, hld.in_time(u) + 1) == 1) { ok = mid; } else { ng = mid; } } if (ok != -1) { i32 u = hld.la(v, ok); for (auto [l, r] : hld.path(u, v, false)) { ++r; siz.update(l, siz.prod(l, l + 1) + 1); siz.update(r, siz.prod(r, r + 1) - 1); } } }; auto sub = [&](i32 v, i32 x) -> void { for (auto [l, r] : hld.path(prob.rt, v, false)) { ++r; segs[x].update(l, segs[x].prod(l, l + 1) - 1); segs[x].update(r, segs[x].prod(r, r + 1) + 1); } i32 dep = hld.depth(v); i32 ok = -1, ng = dep + 1; while (ng - ok > 1) { i32 mid = (ok + ng) / 2; i32 u = hld.la(v, mid); if (segs[x].prod(0, hld.in_time(u) + 1) == 0) { ok = mid; } else { ng = mid; } } if (ok != -1) { i32 u = hld.la(v, ok); for (auto [l, r] : hld.path(u, v, false)) { ++r; siz.update(l, siz.prod(l, l + 1) - 1); siz.update(r, siz.prod(r, r + 1) + 1); } } }; REP(v, prob.n) { add(v, prob.a[v]); } Vec<i32> ans; for (auto [ty, x, y] : prob.queries) { if (ty == 0) { sub(x, prob.a[x]); prob.a[x] = y; add(x, prob.a[x]); } else { if (x == prob.n) { ans.push_back(0); } else { x = hld.in_time(x); ans.push_back(siz.prod(0, x + 1)); } } } return ans; } int main() { i32 r, c, q; cin >> r >> c >> q; Vec<Vec<i32>> l(r, Vec<i32>(c)); REP(i, r) REP(j, c) { cin >> l[i][j]; } Vec<Vec<i32>> p(r, Vec<i32>(c)); REP(i, r) REP(j, c) { cin >> p[i][j]; } Vec<i32> dis; dis.reserve(r * c); REP(i, r) REP(j, c) { dis.push_back(l[i][j]); } sort(ALL(dis)); REP(i, dis.size() - 1) { assert(dis[i] != dis[i + 1]); } Vec<tuple<i32, i32, i32, i32>> queries(q); for (auto &[ty, x, y, val] : queries) { cin >> ty >> y >> x >> val; --ty; --y; --x; } Converted prob = convert(r, c, q, l, p, queries); Vec<i32> ans = solve(prob); for (i32 ele : ans) { cout << ele << '\n'; } }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...