Submission #671357

# Submission time Handle Problem Language Result Execution time Memory
671357 2022-12-12T22:20:16 Z rainboy Hamburg Steak (JOI20_hamburg) C
21 / 100
3000 ms 155780 KB
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
 
#define N	200000
#define LN	18	/* N_ = pow2(ceil(log2(N))) */
#define N_	(N * (LN + 1) + 1)
#define K	4
#define INF	0x3f3f3f3f3f3f3f3fLL
 
long long min(long long a, long long b) { return a < b ? a : b; }
long long max(long long a, long long b) { return a > b ? a : b; }
 
unsigned int X = 12345;
 
int rand_() {
	return (X *= 3) >> 1;
}
 
long long xxl[N], xxr[N], yyl[N], yyr[N], xx[K], yy[K]; int n, k;
 
long long *zz;
 
void sort(int *ii, int l, int r) {
	while (l < r) {
		int i = l, j = l, k = r, i_ = ii[l + rand_() % (r - l)], tmp;
 
		while (j < k)
			if (zz[ii[j]] == zz[i_])
				j++;
			else if (zz[ii[j]] < zz[i_]) {
				tmp = ii[i], ii[i] = ii[j], ii[j] = tmp;
				i++, j++;
			} else {
				k--;
				tmp = ii[j], ii[j] = ii[k], ii[k] = tmp;
			}
		sort(ii, l, i);
		l = k;
	}
}
 
long long *xl1, *xr1, *yl1, *yr1;
 
int ll_[N_], rr_[N_]; long long xxl_[N_], xxr_[N_], yyl_[N_], yyr_[N_];
 
int update(int t, int l, int r, int i, int i_) {
	static int _ = 1;
	int t_ = _++;
 
	ll_[t_] = ll_[t], rr_[t_] = rr_[t], xxl_[t_] = min(xxl_[t], xxr[i_]), xxr_[t_] = max(xxr_[t], xxl[i_]), yyl_[t_] = min(yyl_[t], yyr[i_]), yyr_[t_] = max(yyr_[t], yyl[i_]);
	if (r - l > 1) {
		int m = (l + r) / 2;
 
		if (i < m)
			ll_[t_] = update(ll_[t_], l, m, i, i_);
		else
			rr_[t_] = update(rr_[t_], m, r, i, i_);
	}
	return t_;
}
 
void query(int t, int l, int r, int ql, int qr) {
	int m;
 
	if (qr <= l || r <= ql || t == 0)
		return;
	if (ql <= l && r <= qr) {
		*xl1 = min(*xl1, xxl_[t]), *xr1 = max(*xr1, xxr_[t]), *yl1 = min(*yl1, yyl_[t]), *yr1 = max(*yr1, yyr_[t]);
		return;
	}
	m = (l + r) / 2;
	query(ll_[t], l, m, ql, qr), query(rr_[t], m, r, ql, qr);
}
 
int pierced(int i, int h_) {
	int h;
 
	for (h = 0; h < h_; h++)
		if (xxl[i] <= xx[h] && xx[h] <= xxr[i] && yyl[i] <= yy[h] && yy[h] <= yyr[i])
			return 1;
	return 0;
}
 
void solve(int h_) {
	int h, i;
	long long xl, xr, yl, yr;
 
	xl = INF, xr = -1, yl = INF, yr = -1;
	for (i = 0; i < n; i++)
		if (!pierced(i, h_))
			xl = min(xl, xxr[i]), xr = max(xr, xxl[i]), yl = min(yl, yyr[i]), yr = max(yr, yyl[i]);
	if (xl == INF) {
		for (h = h_; h < k; h++)
			xx[h] = 1, yy[h] = 1;
		for (h = 0; h < k; h++)
			printf("%lld %lld\n", xx[h], yy[h]);
		exit(0);
	} else if (h_ < k) {
		xx[h_] = xl, yy[h_] = yl, solve(h_ + 1);
		xx[h_] = xl, yy[h_] = yr, solve(h_ + 1);
		xx[h_] = xr, yy[h_] = yl, solve(h_ + 1);
		xx[h_] = xr, yy[h_] = yr, solve(h_ + 1);
	}
}
 
long long ll[N], rr[N], rr2[3][N]; int rr1[N];
int ii[3][N], nn[3], nn_[3], tt[3][N + 1]; long long xl, xr, yl, yr, z1, z2, z3, z4;
 
void query_(int g, long long l, long long r) {
	int lower, upper, l_, r_;
 
	lower = -1, upper = nn[g];
	while (upper - lower > 1) {
		int i = (lower + upper) / 2;
 
		if (ll[ii[g][i]] >= l)
			upper = i;
		else
			lower = i;
	}
	l_ = upper;
	lower = -1, upper = nn_[g];
	while (upper - lower > 1) {
		int i = (lower + upper) / 2;
 
		if (rr2[g][i] <= r)
			lower = i;
		else
			upper = i;
	}
	r_ = upper;
	query(tt[g][l_], 0, nn_[g], 0, r_);
}
 
void query1(long long *xx, int n, int g) {
	static int ii_[K + 2];
	int i;
 
	for (i = 0; i < n; i++)
		ii_[i] = i;
	zz = xx, sort(ii_, 0, n);
	for (i = 0; i + 1 < n; i++)
		query_(g, xx[ii_[i]] + 1, xx[ii_[i + 1]] - 1);
}
 
long long idx(long long x, long long y) {
	if (y == yl)
		return x - xl;
	if (x == xr)
		return z1 + y - yl;
	if (y == yr)
		return z2 + xr - x;
	if (x == xl)
		return z3 + yr - y;
	return -1;
}
 
void get_bounds(int h_) {
	static long long xx_[K + 2];
	int h;
	long long x_;
 
	if (h_ == 0) {
		*xl1 = xl, *xr1 = xr, *yl1 = yl, *yr1 = yr;
		return;
	}
	*xl1 = INF, *xr1 = -1, *yl1 = INF, *yr1 = -1;
	xx_[0] = -1;
	x_ = z4;
	for (h = 0; h < h_; h++)
		x_ = min(x_, xx_[h + 1] = idx(xx[h], yy[h]));
	xx_[h_ + 1] = x_ + z4;
	query1(xx_, h_ + 2, 0);
	xx_[0] = -1;
	for (h = 0; h < h_; h++)
		xx_[h + 1] = xx[h];
	xx_[h_ + 1] = INF;
	query1(xx_, h_ + 2, 1);
	xx_[0] = -1;
	for (h = 0; h < h_; h++)
		xx_[h + 1] = yy[h];
	xx_[h_ + 1] = INF;
	query1(xx_, h_ + 2, 2);
}
 
void solve_(int h_) {
	int h, i;
	long long xl_, yl_, xr_, yr_;
 
	if (h_ > 0 && idx(xx[h_ - 1], yy[h_ - 1]) == -1)
		return;
	xl1 = &xl_, xr1 = &xr_, yl1 = &yl_, yr1 = &yr_, get_bounds(h_);
	if (xl_ == INF) {
		for (h = h_; h < k; h++)
			xx[h] = 1, yy[h] = 1;
		for (h = 0; h < k; h++)
			printf("%lld %lld\n", xx[h], yy[h]);
		exit(0);
	} else if (h_ == 0) {
		xx[h_] = xl_;
		for (i = 0; i < n; i++)
			yy[h_] = yyl[i], solve_(h_ + 1);
	} else if (h_ == k - 1) {
		xx[h_] = xl_, yy[h_] = yl_, solve_(h_ + 1);
	} else if (h_ == k - 2) {
		xx[h_] = xl_, yy[h_] = yl_, solve_(h_ + 1);
		xx[h_] = xl_, yy[h_] = yr_, solve_(h_ + 1);
	} else if (h_ == k - 3) {
		xx[h_] = xl_, yy[h_] = yl_, solve_(h_ + 1);
		xx[h_] = xl_, yy[h_] = yr_, solve_(h_ + 1);
		xx[h_] = xr_, yy[h_] = yl_, solve_(h_ + 1);
		xx[h_] = xr_, yy[h_] = yr_, solve_(h_ + 1);
	} else if (h_ < k) {
		xx[h_] = xl_, yy[h_] = yl_, solve_(h_ + 1);
		xx[h_] = xl_, yy[h_] = yr_, solve_(h_ + 1);
		xx[h_] = xr_, yy[h_] = yl_, solve_(h_ + 1);
		xx[h_] = xr_, yy[h_] = yr_, solve_(h_ + 1);
	}
}
 
int main() {
	int g, i, i_;
	long long l, r;
 
	scanf("%d%d", &n, &k);
	for (i = 0; i < n; i++)
		scanf("%lld%lld%lld%lld", &xxl[i], &yyl[i], &xxr[i], &yyr[i]);
	solve(0);
	xl = INF, xr = -1, yl = INF, yr = -1;
	for (i = 0; i < n; i++)
		xl = min(xl, xxr[i]), xr = max(xr, xxl[i]), yl = min(yl, yyr[i]), yr = max(yr, yyl[i]);
	assert(k == 4 && xl < xr && yl < yr);
	z1 = xr - xl, z2 = z1 + yr - yl, z3 = z2 + xr - xl, z4 = z3 + yr - yl;
	for (i = 0; i < n; i++)
		xxl[i] = max(xxl[i], xl), xxr[i] = min(xxr[i], xr), yyl[i] = max(yyl[i], yl), yyr[i] = min(yyr[i], yr);
	for (i = 0; i < n; i++)
		if (xl < xxl[i] && xxr[i] < xr && yyl[i] == yl && yyr[i] == yr)
			ll[i] = xxl[i], rr[i] = xxr[i], ii[1][nn[1]++] = i;
		else if (yl < yyl[i] && yyr[i] < yr && xxl[i] == xl && xxr[i] == xr)
			ll[i] = yyl[i], rr[i] = yyr[i], ii[2][nn[2]++] = i;
		else {
			l = INF, r = -1;
			if (yyl[i] == yl)
				l = min(l, xxl[i] - xl), r = max(r, xxr[i] - xl);
			if (xxr[i] == xr)
				l = min(l, z1 + yyl[i] - yl), r = max(r, z1 + yyr[i] - yl);
			if (xxl[i] == xl && yyl[i] == yl)
				l += z4, r += z4;
			if (yyr[i] == yr)
				l = min(l, z2 + xr - xxr[i]), r = max(r, z2 + xr - xxl[i]);
			if (xxl[i] == xl)
				l = min(l, z3 + yr - yyr[i]), r = max(r, z3 + yr - yyl[i]);
			if (l >= z4)
				l -= z4, r -= z4;
			ll[i] = l, rr[i] = r, ii[0][nn[0]++] = i;
		}
	xxl_[0] = INF, xxr_[0] = -1, yyl_[0] = INF, yyr_[0] = -1;
	for (g = 0; g < 3; g++) {
		zz = rr, sort(ii[g], 0, nn[g]);
		for (i = 0; i < nn[g]; i++) {
			i_ = ii[g][i];
			rr1[i_] = nn_[g];
			if (i + 1 == nn[g] || rr[ii[g][i + 1]] != rr[i_])
				rr2[g][nn_[g]++] = rr[i_];
		}
		zz = ll, sort(ii[g], 0, nn[g]);
		for (i = nn[g] - 1; i >= 0; i--) {
			i_ = ii[g][i];
			tt[g][i] = update(tt[g][i + 1], 0, nn_[g], rr1[i_], i_);
		}
	}
	solve_(0);
	return 0;
}

Compilation message

hamburg.c: In function 'main':
hamburg.c:226:2: warning: ignoring return value of 'scanf' declared with attribute 'warn_unused_result' [-Wunused-result]
  226 |  scanf("%d%d", &n, &k);
      |  ^~~~~~~~~~~~~~~~~~~~~
hamburg.c:228:3: warning: ignoring return value of 'scanf' declared with attribute 'warn_unused_result' [-Wunused-result]
  228 |   scanf("%lld%lld%lld%lld", &xxl[i], &yyl[i], &xxr[i], &yyr[i]);
      |   ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 3 ms 340 KB Output is correct
10 Correct 2 ms 340 KB Output is correct
11 Correct 2 ms 340 KB Output is correct
12 Correct 2 ms 380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 2 ms 364 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 2 ms 340 KB Output is correct
9 Correct 4 ms 460 KB Output is correct
10 Correct 2 ms 340 KB Output is correct
11 Correct 2 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 9 ms 376 KB Output is correct
14 Correct 23 ms 1452 KB Output is correct
15 Correct 9 ms 376 KB Output is correct
16 Correct 6 ms 340 KB Output is correct
17 Correct 22 ms 1364 KB Output is correct
18 Correct 6 ms 380 KB Output is correct
19 Correct 8 ms 340 KB Output is correct
20 Correct 29 ms 1432 KB Output is correct
21 Correct 10 ms 376 KB Output is correct
22 Correct 7 ms 340 KB Output is correct
23 Correct 14 ms 1332 KB Output is correct
24 Correct 7 ms 340 KB Output is correct
25 Correct 4 ms 340 KB Output is correct
26 Correct 4 ms 340 KB Output is correct
27 Correct 5 ms 340 KB Output is correct
28 Correct 4 ms 340 KB Output is correct
29 Correct 4 ms 340 KB Output is correct
30 Correct 4 ms 340 KB Output is correct
31 Correct 20 ms 1396 KB Output is correct
32 Correct 10 ms 1400 KB Output is correct
33 Correct 12 ms 1364 KB Output is correct
34 Correct 11 ms 1404 KB Output is correct
35 Correct 16 ms 1364 KB Output is correct
36 Correct 22 ms 1432 KB Output is correct
37 Correct 49 ms 1364 KB Output is correct
38 Correct 16 ms 1364 KB Output is correct
39 Correct 25 ms 1364 KB Output is correct
40 Correct 32 ms 1364 KB Output is correct
41 Correct 34 ms 1364 KB Output is correct
42 Correct 25 ms 1364 KB Output is correct
43 Correct 17 ms 1364 KB Output is correct
44 Correct 32 ms 1364 KB Output is correct
45 Correct 5 ms 340 KB Output is correct
46 Correct 33 ms 1404 KB Output is correct
47 Correct 17 ms 1340 KB Output is correct
48 Correct 15 ms 1304 KB Output is correct
49 Correct 24 ms 1364 KB Output is correct
50 Correct 14 ms 1424 KB Output is correct
51 Correct 40 ms 1400 KB Output is correct
52 Correct 26 ms 1320 KB Output is correct
53 Correct 17 ms 1364 KB Output is correct
54 Correct 15 ms 1404 KB Output is correct
55 Correct 15 ms 1364 KB Output is correct
56 Correct 21 ms 1364 KB Output is correct
57 Correct 17 ms 1396 KB Output is correct
58 Correct 14 ms 1404 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 77 ms 6496 KB Output is correct
6 Correct 83 ms 6476 KB Output is correct
7 Correct 82 ms 6528 KB Output is correct
8 Correct 80 ms 6452 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 80 ms 6496 KB Output is correct
6 Correct 87 ms 6484 KB Output is correct
7 Correct 79 ms 6460 KB Output is correct
8 Correct 90 ms 6528 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 3 ms 340 KB Output is correct
10 Correct 2 ms 340 KB Output is correct
11 Correct 2 ms 340 KB Output is correct
12 Correct 2 ms 380 KB Output is correct
13 Correct 83 ms 6500 KB Output is correct
14 Correct 81 ms 6528 KB Output is correct
15 Correct 78 ms 6444 KB Output is correct
16 Correct 89 ms 6532 KB Output is correct
17 Correct 81 ms 6524 KB Output is correct
18 Correct 78 ms 6516 KB Output is correct
19 Correct 83 ms 6488 KB Output is correct
20 Correct 97 ms 6504 KB Output is correct
21 Correct 249 ms 6532 KB Output is correct
22 Correct 161 ms 6512 KB Output is correct
23 Correct 135 ms 6528 KB Output is correct
24 Correct 148 ms 6528 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 2 ms 364 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 2 ms 340 KB Output is correct
9 Correct 4 ms 460 KB Output is correct
10 Correct 2 ms 340 KB Output is correct
11 Correct 2 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 9 ms 376 KB Output is correct
14 Correct 23 ms 1452 KB Output is correct
15 Correct 9 ms 376 KB Output is correct
16 Correct 6 ms 340 KB Output is correct
17 Correct 22 ms 1364 KB Output is correct
18 Correct 6 ms 380 KB Output is correct
19 Correct 8 ms 340 KB Output is correct
20 Correct 29 ms 1432 KB Output is correct
21 Correct 10 ms 376 KB Output is correct
22 Correct 7 ms 340 KB Output is correct
23 Correct 14 ms 1332 KB Output is correct
24 Correct 7 ms 340 KB Output is correct
25 Correct 4 ms 340 KB Output is correct
26 Correct 4 ms 340 KB Output is correct
27 Correct 5 ms 340 KB Output is correct
28 Correct 4 ms 340 KB Output is correct
29 Correct 4 ms 340 KB Output is correct
30 Correct 4 ms 340 KB Output is correct
31 Correct 20 ms 1396 KB Output is correct
32 Correct 10 ms 1400 KB Output is correct
33 Correct 12 ms 1364 KB Output is correct
34 Correct 11 ms 1404 KB Output is correct
35 Correct 16 ms 1364 KB Output is correct
36 Correct 22 ms 1432 KB Output is correct
37 Correct 49 ms 1364 KB Output is correct
38 Correct 16 ms 1364 KB Output is correct
39 Correct 25 ms 1364 KB Output is correct
40 Correct 32 ms 1364 KB Output is correct
41 Correct 34 ms 1364 KB Output is correct
42 Correct 25 ms 1364 KB Output is correct
43 Correct 17 ms 1364 KB Output is correct
44 Correct 32 ms 1364 KB Output is correct
45 Correct 5 ms 340 KB Output is correct
46 Correct 33 ms 1404 KB Output is correct
47 Correct 17 ms 1340 KB Output is correct
48 Correct 15 ms 1304 KB Output is correct
49 Correct 24 ms 1364 KB Output is correct
50 Correct 14 ms 1424 KB Output is correct
51 Correct 40 ms 1400 KB Output is correct
52 Correct 26 ms 1320 KB Output is correct
53 Correct 17 ms 1364 KB Output is correct
54 Correct 15 ms 1404 KB Output is correct
55 Correct 15 ms 1364 KB Output is correct
56 Correct 21 ms 1364 KB Output is correct
57 Correct 17 ms 1396 KB Output is correct
58 Correct 14 ms 1404 KB Output is correct
59 Correct 83 ms 6472 KB Output is correct
60 Correct 94 ms 6524 KB Output is correct
61 Correct 81 ms 6496 KB Output is correct
62 Correct 81 ms 6452 KB Output is correct
63 Correct 82 ms 6440 KB Output is correct
64 Correct 81 ms 6536 KB Output is correct
65 Correct 87 ms 6492 KB Output is correct
66 Correct 99 ms 6460 KB Output is correct
67 Correct 266 ms 6452 KB Output is correct
68 Correct 212 ms 6532 KB Output is correct
69 Correct 142 ms 6468 KB Output is correct
70 Correct 166 ms 6532 KB Output is correct
71 Correct 1033 ms 6532 KB Output is correct
72 Execution timed out 3087 ms 155780 KB Time limit exceeded
73 Halted 0 ms 0 KB -