Submission #671345

# Submission time Handle Problem Language Result Execution time Memory
671345 2022-12-12T21:56:17 Z rainboy Hamburg Steak (JOI20_hamburg) C
21 / 100
3000 ms 155852 KB
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

#define N	200000
#define LN	18	/* N_ = pow2(ceil(log2(N))) */
#define N_	(N * (LN + 1) + 1)
#define K	4
#define INF	0x3f3f3f3f3f3f3f3fLL

long long min(long long a, long long b) { return a < b ? a : b; }
long long max(long long a, long long b) { return a > b ? a : b; }

unsigned int X = 12345;

int rand_() {
	return (X *= 3) >> 1;
}

long long xxl[N], xxr[N], yyl[N], yyr[N], xx[K], yy[K]; int n, k;

long long *zz;

void sort(int *ii, int l, int r) {
	while (l < r) {
		int i = l, j = l, k = r, i_ = ii[l + rand_() % (r - l)], tmp;

		while (j < k)
			if (zz[ii[j]] == zz[i_])
				j++;
			else if (zz[ii[j]] < zz[i_]) {
				tmp = ii[i], ii[i] = ii[j], ii[j] = tmp;
				i++, j++;
			} else {
				k--;
				tmp = ii[j], ii[j] = ii[k], ii[k] = tmp;
			}
		sort(ii, l, i);
		l = k;
	}
}

long long *xl1, *xr1, *yl1, *yr1;

int ll_[N_], rr_[N_]; long long xxl_[N_], xxr_[N_], yyl_[N_], yyr_[N_];

int update(int t, int l, int r, int i, int i_) {
	static int _ = 1;
	int t_ = _++;

	ll_[t_] = ll_[t], rr_[t_] = rr_[t], xxl_[t_] = min(xxl_[t], xxr[i_]), xxr_[t_] = max(xxr_[t], xxl[i_]), yyl_[t_] = min(yyl_[t], yyr[i_]), yyr_[t_] = max(yyr_[t], yyl[i_]);
	if (r - l > 1) {
		int m = (l + r) / 2;

		if (i < m)
			ll_[t_] = update(ll_[t_], l, m, i, i_);
		else
			rr_[t_] = update(rr_[t_], m, r, i, i_);
	}
	return t_;
}

void query(int t, int l, int r, int ql, int qr) {
	int m;

	if (qr <= l || r <= ql || t == 0)
		return;
	if (ql <= l && r <= qr) {
		*xl1 = min(*xl1, xxl_[t]), *xr1 = max(*xr1, xxr_[t]), *yl1 = min(*yl1, yyl_[t]), *yr1 = max(*yr1, yyr_[t]);
		return;
	}
	m = (l + r) / 2;
	query(ll_[t], l, m, ql, qr), query(rr_[t], m, r, ql, qr);
}

int pierced(int i, int h_) {
	int h;

	for (h = 0; h < h_; h++)
		if (xxl[i] <= xx[h] && xx[h] <= xxr[i] && yyl[i] <= yy[h] && yy[h] <= yyr[i])
			return 1;
	return 0;
}

void solve(int h_) {
	int h, i;
	long long xl, xr, yl, yr;

	xl = INF, xr = -1, yl = INF, yr = -1;
	for (i = 0; i < n; i++)
		if (!pierced(i, h_))
			xl = min(xl, xxr[i]), xr = max(xr, xxl[i]), yl = min(yl, yyr[i]), yr = max(yr, yyl[i]);
	if (xl == INF) {
		for (h = h_; h < k; h++)
			xx[h] = 1, yy[h] = 1;
		for (h = 0; h < k; h++)
			printf("%lld %lld\n", xx[h], yy[h]);
		exit(0);
	} else if (k - h_ == 1) {
		xx[h_] = xl, yy[h_] = yl, solve(h_ + 1);
	} else if (k - h_ == 2) {
		xx[h_] = xl, yy[h_] = yl, solve(h_ + 1);
		xx[h_] = xl, yy[h_] = yr, solve(h_ + 1);
	} else if (k - h_ >= 3) {
		xx[h_] = xl, yy[h_] = yl, solve(h_ + 1);
		xx[h_] = xl, yy[h_] = yr, solve(h_ + 1);
		xx[h_] = xr, yy[h_] = yl, solve(h_ + 1);
		xx[h_] = xr, yy[h_] = yr, solve(h_ + 1);
	}
}

long long ll[N], rr[N], rr2[3][N]; int rr1[N];
int ii[3][N], nn[3], nn_[3], tt[3][N + 1]; long long xl, xr, yl, yr, z1, z2, z3, z4;

void query_(int g, long long l, long long r) {
	int lower, upper, l_, r_;

	lower = -1, upper = nn[g];
	while (upper - lower > 1) {
		int i = (lower + upper) / 2;

		if (ll[ii[g][i]] >= l)
			upper = i;
		else
			lower = i;
	}
	l_ = upper;
	lower = -1, upper = nn_[g];
	while (upper - lower > 1) {
		int i = (lower + upper) / 2;

		if (rr2[g][i] <= r)
			lower = i;
		else
			upper = i;
	}
	r_ = upper;
	query(tt[g][l_], 0, nn_[g], 0, r_);
}

void query1(long long *xx, int n, int g) {
	static int ii_[K + 2];
	int i;

	for (i = 0; i < n; i++)
		ii_[i] = i;
	zz = xx, sort(ii_, 0, n);
	for (i = 0; i + 1 < n; i++)
		query_(g, xx[ii_[i]] + 1, xx[ii_[i + 1]] - 1);
}

long long idx(long long x, long long y) {
	if (y == yl)
		return x - xl;
	if (x == xr)
		return z1 + y - yl;
	if (y == yr)
		return z2 + xr - x;
	if (x == xl)
		return z3 + yr - y;
	return -1;
}

void get_bounds(int h_) {
	static long long xx_[K + 2];
	int h;
	long long x_;

	if (h_ == 0) {
		*xl1 = xl, *xr1 = xr, *yl1 = yl, *yr1 = yr;
		return;
	}
	*xl1 = INF, *xr1 = -1, *yl1 = INF, *yr1 = -1;
	xx_[0] = -1;
	x_ = z4;
	for (h = 0; h < h_; h++)
		x_ = min(x_, xx_[h + 1] = idx(xx[h], yy[h]));
	xx_[h_ + 1] = x_ + z4;
	query1(xx_, h_ + 2, 0);
	xx_[0] = -1;
	for (h = 0; h < h_; h++)
		xx_[h + 1] = xx[h];
	xx_[h_ + 1] = INF;
	query1(xx_, h_ + 2, 1);
	xx_[0] = -1;
	for (h = 0; h < h_; h++)
		xx_[h + 1] = yy[h];
	xx_[h_ + 1] = INF;
	query1(xx_, h_ + 2, 2);
}

void solve_(int h_) {
	int h, i;
	long long xl_, yl_, xr_, yr_;

	if (h_ > 0 && idx(xx[h_ - 1], yy[h_ - 1]) == -1)
		return;
	xl1 = &xl_, xr1 = &xr_, yl1 = &yl_, yr1 = &yr_, get_bounds(h_);
	if (xl_ == INF) {
		for (h = h_; h < k; h++)
			xx[h] = 1, yy[h] = 1;
		for (h = 0; h < k; h++)
			printf("%lld %lld\n", xx[h], yy[h]);
		exit(0);
	} else if (k - h_ == 1) {
		xx[h_] = xl_, yy[h_] = yl_, solve(h_ + 1);
	} else if (k - h_ == 2) {
		xx[h_] = xl_, yy[h_] = yl_, solve(h_ + 1);
		xx[h_] = xl_, yy[h_] = yr_, solve(h_ + 1);
	} else if (k - h_ == 3) {
		xx[h_] = xl_, yy[h_] = yl_, solve_(h_ + 1);
		xx[h_] = xl_, yy[h_] = yr_, solve_(h_ + 1);
		xx[h_] = xr_, yy[h_] = yl_, solve_(h_ + 1);
		xx[h_] = xr_, yy[h_] = yr_, solve_(h_ + 1);
	} else {
		xx[h_] = xl_;
		for (i = 0; i < n; i++)
			yy[h_] = yyl[i], solve_(h_ + 1);
	}
}

int main() {
	int g, i, i_;
	long long l, r;

	scanf("%d%d", &n, &k);
	for (i = 0; i < n; i++)
		scanf("%lld%lld%lld%lld", &xxl[i], &yyl[i], &xxr[i], &yyr[i]);
	solve(0);
	xl = INF, xr = -1, yl = INF, yr = -1;
	for (i = 0; i < n; i++)
		xl = min(xl, xxr[i]), xr = max(xr, xxl[i]), yl = min(yl, yyr[i]), yr = max(yr, yyl[i]);
	assert(k == 4 && xl < xr && yl < yr);
	z1 = xr - xl, z2 = z1 + yr - yl, z3 = z2 + xr - xl, z4 = z3 + yr - yl;
	for (i = 0; i < n; i++)
		xxl[i] = max(xxl[i], xl), xxr[i] = min(xxr[i], xr), yyl[i] = max(yyl[i], yl), yyr[i] = min(yyr[i], yr);
	for (i = 0; i < n; i++)
		if (xl < xxl[i] && xxr[i] < xr && yyl[i] == yl && yyr[i] == yr)
			ll[i] = xxl[i], rr[i] = xxr[i], ii[1][nn[1]++] = i;
		else if (yl < yyl[i] && yyr[i] < yr && xxl[i] == xl && xxr[i] == xr)
			ll[i] = yyl[i], rr[i] = yyr[i], ii[2][nn[2]++] = i;
		else {
			l = INF, r = -1;
			if (yyl[i] == yl)
				l = min(l, xxl[i] - xl), r = max(r, xxr[i] - xl);
			if (xxr[i] == xr)
				l = min(l, z1 + yyl[i] - yl), r = max(r, z1 + yyr[i] - yl);
			if (xxl[i] == xl && yyl[i] == yl)
				l += z4, r += z4;
			if (yyr[i] == yr)
				l = min(l, z2 + xr - xxr[i]), r = max(r, z2 + xr - xxl[i]);
			if (xxl[i] == xl)
				l = min(l, z3 + yr - yyr[i]), r = max(r, z3 + yr - yyl[i]);
			if (l >= z4)
				l -= z4, r -= z4;
			ll[i] = l, rr[i] = r, ii[0][nn[0]++] = i;
		}
	xxl_[0] = INF, xxr_[0] = -1, yyl_[0] = INF, yyr_[0] = -1;
	for (g = 0; g < 3; g++) {
		zz = rr, sort(ii[g], 0, nn[g]);
		for (i = 0; i < nn[g]; i++) {
			i_ = ii[g][i];
			rr1[i_] = nn_[g];
			if (i + 1 == nn[g] || rr[ii[g][i + 1]] != rr[i_])
				rr2[g][nn_[g]++] = rr[i_];
		}
		zz = ll, sort(ii[g], 0, nn[g]);
		for (i = nn[g] - 1; i >= 0; i--) {
			i_ = ii[g][i];
			tt[g][i] = update(tt[g][i + 1], 0, nn_[g], rr1[i_], i_);
		}
	}
	solve_(0);
	return 0;
}

Compilation message

hamburg.c: In function 'main':
hamburg.c:226:2: warning: ignoring return value of 'scanf' declared with attribute 'warn_unused_result' [-Wunused-result]
  226 |  scanf("%d%d", &n, &k);
      |  ^~~~~~~~~~~~~~~~~~~~~
hamburg.c:228:3: warning: ignoring return value of 'scanf' declared with attribute 'warn_unused_result' [-Wunused-result]
  228 |   scanf("%lld%lld%lld%lld", &xxl[i], &yyl[i], &xxr[i], &yyr[i]);
      |   ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 2 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 2 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 2 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 3 ms 340 KB Output is correct
14 Correct 334 ms 1364 KB Output is correct
15 Correct 3 ms 340 KB Output is correct
16 Correct 2 ms 340 KB Output is correct
17 Correct 211 ms 1432 KB Output is correct
18 Correct 2 ms 340 KB Output is correct
19 Correct 3 ms 340 KB Output is correct
20 Correct 290 ms 1412 KB Output is correct
21 Correct 3 ms 340 KB Output is correct
22 Correct 2 ms 340 KB Output is correct
23 Correct 26 ms 1364 KB Output is correct
24 Correct 2 ms 340 KB Output is correct
25 Correct 2 ms 340 KB Output is correct
26 Correct 2 ms 340 KB Output is correct
27 Correct 2 ms 340 KB Output is correct
28 Correct 2 ms 340 KB Output is correct
29 Correct 2 ms 340 KB Output is correct
30 Correct 2 ms 340 KB Output is correct
31 Correct 164 ms 1388 KB Output is correct
32 Correct 9 ms 1364 KB Output is correct
33 Correct 25 ms 1408 KB Output is correct
34 Correct 18 ms 1452 KB Output is correct
35 Correct 64 ms 1396 KB Output is correct
36 Correct 170 ms 1412 KB Output is correct
37 Correct 580 ms 1436 KB Output is correct
38 Correct 60 ms 1364 KB Output is correct
39 Correct 276 ms 1404 KB Output is correct
40 Correct 256 ms 1424 KB Output is correct
41 Correct 411 ms 1364 KB Output is correct
42 Correct 239 ms 1388 KB Output is correct
43 Correct 247 ms 1416 KB Output is correct
44 Correct 262 ms 1412 KB Output is correct
45 Correct 2 ms 340 KB Output is correct
46 Correct 330 ms 1416 KB Output is correct
47 Correct 88 ms 1364 KB Output is correct
48 Correct 37 ms 1380 KB Output is correct
49 Correct 205 ms 1432 KB Output is correct
50 Correct 102 ms 1484 KB Output is correct
51 Correct 382 ms 1424 KB Output is correct
52 Correct 246 ms 1408 KB Output is correct
53 Correct 95 ms 1400 KB Output is correct
54 Correct 49 ms 1364 KB Output is correct
55 Correct 127 ms 1432 KB Output is correct
56 Correct 301 ms 1436 KB Output is correct
57 Correct 218 ms 1484 KB Output is correct
58 Correct 44 ms 1384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 77 ms 6476 KB Output is correct
6 Correct 78 ms 6472 KB Output is correct
7 Correct 76 ms 6440 KB Output is correct
8 Correct 76 ms 6488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 79 ms 6476 KB Output is correct
6 Correct 80 ms 6476 KB Output is correct
7 Correct 79 ms 6436 KB Output is correct
8 Correct 88 ms 6536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 2 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 81 ms 6512 KB Output is correct
14 Correct 83 ms 6476 KB Output is correct
15 Correct 80 ms 6532 KB Output is correct
16 Correct 83 ms 6472 KB Output is correct
17 Correct 81 ms 6444 KB Output is correct
18 Correct 80 ms 6420 KB Output is correct
19 Correct 80 ms 6416 KB Output is correct
20 Correct 88 ms 6412 KB Output is correct
21 Correct 123 ms 6476 KB Output is correct
22 Correct 97 ms 6440 KB Output is correct
23 Correct 90 ms 6496 KB Output is correct
24 Correct 98 ms 6580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 2 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 2 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 3 ms 340 KB Output is correct
14 Correct 334 ms 1364 KB Output is correct
15 Correct 3 ms 340 KB Output is correct
16 Correct 2 ms 340 KB Output is correct
17 Correct 211 ms 1432 KB Output is correct
18 Correct 2 ms 340 KB Output is correct
19 Correct 3 ms 340 KB Output is correct
20 Correct 290 ms 1412 KB Output is correct
21 Correct 3 ms 340 KB Output is correct
22 Correct 2 ms 340 KB Output is correct
23 Correct 26 ms 1364 KB Output is correct
24 Correct 2 ms 340 KB Output is correct
25 Correct 2 ms 340 KB Output is correct
26 Correct 2 ms 340 KB Output is correct
27 Correct 2 ms 340 KB Output is correct
28 Correct 2 ms 340 KB Output is correct
29 Correct 2 ms 340 KB Output is correct
30 Correct 2 ms 340 KB Output is correct
31 Correct 164 ms 1388 KB Output is correct
32 Correct 9 ms 1364 KB Output is correct
33 Correct 25 ms 1408 KB Output is correct
34 Correct 18 ms 1452 KB Output is correct
35 Correct 64 ms 1396 KB Output is correct
36 Correct 170 ms 1412 KB Output is correct
37 Correct 580 ms 1436 KB Output is correct
38 Correct 60 ms 1364 KB Output is correct
39 Correct 276 ms 1404 KB Output is correct
40 Correct 256 ms 1424 KB Output is correct
41 Correct 411 ms 1364 KB Output is correct
42 Correct 239 ms 1388 KB Output is correct
43 Correct 247 ms 1416 KB Output is correct
44 Correct 262 ms 1412 KB Output is correct
45 Correct 2 ms 340 KB Output is correct
46 Correct 330 ms 1416 KB Output is correct
47 Correct 88 ms 1364 KB Output is correct
48 Correct 37 ms 1380 KB Output is correct
49 Correct 205 ms 1432 KB Output is correct
50 Correct 102 ms 1484 KB Output is correct
51 Correct 382 ms 1424 KB Output is correct
52 Correct 246 ms 1408 KB Output is correct
53 Correct 95 ms 1400 KB Output is correct
54 Correct 49 ms 1364 KB Output is correct
55 Correct 127 ms 1432 KB Output is correct
56 Correct 301 ms 1436 KB Output is correct
57 Correct 218 ms 1484 KB Output is correct
58 Correct 44 ms 1384 KB Output is correct
59 Correct 83 ms 6532 KB Output is correct
60 Correct 91 ms 6468 KB Output is correct
61 Correct 82 ms 6496 KB Output is correct
62 Correct 81 ms 6476 KB Output is correct
63 Correct 82 ms 6448 KB Output is correct
64 Correct 80 ms 6476 KB Output is correct
65 Correct 85 ms 6532 KB Output is correct
66 Correct 89 ms 6436 KB Output is correct
67 Correct 127 ms 6504 KB Output is correct
68 Correct 115 ms 6604 KB Output is correct
69 Correct 100 ms 6484 KB Output is correct
70 Correct 105 ms 6476 KB Output is correct
71 Correct 308 ms 6444 KB Output is correct
72 Execution timed out 3081 ms 155852 KB Time limit exceeded
73 Halted 0 ms 0 KB -