Submission #670290

# Submission time Handle Problem Language Result Execution time Memory
670290 2022-12-08T14:58:25 Z Cyanmond Izvanzemaljci (COI21_izvanzemaljci) C++17
100 / 100
1632 ms 16360 KB
#include <bits/stdc++.h>

using i64 = long long;

constexpr i64 inf = 1ll << 40;
constexpr i64 limit = 1000000000ll;

struct Answer {
    i64 width;
    std::array<std::tuple<i64, i64, i64, i64, i64>, 3> points;
};

bool operator <(const Answer &a, const Answer &b) {
    return a.width < b.width;
}

using T = std::pair<i64, int>;
using F = i64;

T operate(T a, T b) {
    return std::max(a, b);
}

T identity_T() {
    return std::make_pair(-inf, 0);
}

F composite(F a, F b) {
    return a + b;
}

T map(F a, T b) {
    return {b.first + a, b.second};
}

F identity_F() {
    return 0;
}

class lazy_segtree {
    int n, size, logn;
    std::vector<T> data;
    std::vector<F> lazy;

    void update(int i) {
        data[i] = operate(data[2 * i], data[2 * i + 1]);
    }

    void apply(int i, const F &v) {
        data[i] = map(v, data[i]);
        if (i < size) {
            lazy[i] = composite(lazy[i], v);
        }
    }

    void flush(int i) {
        apply(2 * i, lazy[i]);
        apply(2 * i + 1, lazy[i]);
        lazy[i] = identity_F();
    }

    void push1(int i) {
        for (int d = logn; d >= 1; --d) {
            if ((i >> d) << d != i) flush(i >> d);
        }
    }
    void push2(int i) {
        for (int d = logn; d >= 1; --d) {
            if ((i >> d) << d != i) flush((i - 1) >> d);
        }
    }

    void pull1(int i) {
        for (int d = 1; d <= logn; ++d) {
            if (((i >> d) << d) != i) update(i >> d);
        }
    }
    void pull2(int i) {
        for (int d = 1; d <= logn; ++d) {
            if (((i >> d) << d) != i) update((i - 1) >> d);
        }
    }
    
  public:
    lazy_segtree(std::vector<T> vec) : n(vec.size()) {
        size = 1;
        logn = 0;
        while (size < n) {
            ++logn;
            size *= 2;
        }
        data.assign(2 * size, identity_T());
        lazy.assign(size, identity_F());
        for (int i = 0; i < n; ++i) {
            data[i + size] = vec[i];
        }
        for (int i = size - 1; i >= 1; --i) {
            update(i);
        }
    }

    void operate_range(int l, int r, F x) {
        l += size;
        r += size;
        push1(l);
        push2(r);
        for (int l2 = l, r2 = r; l2 < r2; l2 /= 2, r2 /= 2) {
            if (l2 & 1) {
                apply(l2++, x);
            }
            if (r2 & 1) {
                apply(--r2, x);
            }
        }
        pull1(l);
        pull2(r);
    }

    void operate_point(int i, F x) {
        operate_range(i, i + 1, x);
    }

    T fold(int l, int r) {
        l += size;
        r += size;
        push1(l);
        push2(r);
        T ml = identity_T(), mr = identity_T();
        while (l < r) {
            if (l & 1) {
                ml = operate(ml, data[l++]);
            }
            if (r & 1) {
                mr = operate(data[--r], mr);
            }
            l /= 2;
            r /= 2;
        }
        return operate(ml, mr);
    }
};

int main() {
    int N, K;
    std::cin >> N >> K;
    std::vector<i64> X(N), Y(N);
    for (int i = 0; i < N; ++i) {
        std::cin >> X[i] >> Y[i];
    }

    auto rotate = [&](const i64 x, const i64 y) {
        return std::make_pair(y, -x);
    };

    auto reverse_rotate = [&](const i64 x, const i64 y) {
        return std::make_pair(-y, x);
    };


    auto solve_k1 = [&]() -> Answer {
        const i64 max_x = *std::max_element(X.begin(), X.end());
        const i64 min_x = *std::min_element(X.begin(), X.end());
        const i64 max_y = *std::max_element(Y.begin(), Y.end());
        const i64 min_y = *std::min_element(Y.begin(), Y.end());

        Answer ans;
        ans.width = std::max(max_x - min_x, max_y - min_y);
        ans.points[0] = std::make_tuple(min_x, min_y, max_x, max_y, ans.width);
        ans.points[1] = std::make_tuple(-3 * limit, -3 * limit, -3 * limit + 1, -3 * limit + 1, 1);
        ans.points[2] = std::make_tuple(3 * limit - 1, 3 * limit - 1, 3 * limit, 3 * limit, 1);
        return ans;
    };

    auto solve_k2sub = [](int N, std::vector<std::pair<i64, i64>> C) {
        std::vector<i64> max_y_l(N + 1), min_y_l(N + 1), max_y_r(N + 1), min_y_r(N + 1);
        max_y_l[0] = max_y_r[N] = -inf;
        min_y_l[0] = min_y_r[N] = inf;
        for (int i = 0; i < N; ++i) {
            max_y_l[i + 1] = min_y_l[i + 1] = C[i].second;
            max_y_r[i] = min_y_r[i] = C[i].second;
        }
        for (int i = 0; i < N; ++i) {
            max_y_l[i + 1] = std::max(max_y_l[i + 1], max_y_l[i]);
            min_y_l[i + 1] = std::min(min_y_l[i + 1], min_y_l[i]);
        }
        for (int i = N; i > 0; --i) {
            max_y_r[i - 1] = std::max(max_y_r[i - 1], max_y_r[i]);
            min_y_r[i - 1] = std::min(min_y_r[i - 1], min_y_r[i]);
        }

        Answer ret;
        ret.width = inf;
        for (int i = 1; i < N; ++i) {
            const i64 max_x1 = C[i - 1].first, min_x1 = C[0].first;
            const i64 max_x2 = C[N - 1].first, min_x2 = C[i].first;
            const i64 max_y1 = max_y_l[i], min_y1 = min_y_l[i];
            const i64 max_y2 = max_y_r[i], min_y2 = min_y_r[i];
            if (C[i - 1].first == C[i].first) {
                if (std::max(min_y1, min_y2) <= std::min(max_y1, max_y2)) {
                    continue;
                }
            }

            Answer cp;
            const i64 w1 = std::max({max_x1 - min_x1, max_y1 - min_y1, 1ll});
            const i64 w2 = std::max({max_x2 - min_x2, max_y2 - min_y2, 1ll});

            cp.points[0] = std::make_tuple(max_x1 - w1, max_y1 - w1, max_x1, max_y1, w1);
            cp.points[1] = std::make_tuple(min_x2, max_y2 - w2, min_x2 + w2, max_y2, w2);
            cp.width = std::max(w1, w2);

            ret = std::min(ret, cp);
        }

        return ret;
    };

    auto solve_k2 = [&]() -> Answer {
        std::vector<std::pair<i64, i64>> C(N);
        for (int i = 0; i < N; ++i) {
            C[i] = {X[i], Y[i]};
        }
        std::sort(C.begin(), C.end());

        auto ret = solve_k2sub(N, C);
        ret.points[2] = std::make_tuple(-3 * limit, -3 * limit, -3 * limit + 1, -3 * limit + 1, 1);
        return ret;
    };

    auto solve_k3_sub1 = [&]() {
        std::vector<std::pair<i64, i64>> C(N);
        for (int i = 0; i < N; ++i) {
            C[i] = {X[i], Y[i]};
        }
        std::sort(C.begin(), C.end());

        std::vector<i64> max_y_l(N + 1), min_y_l(N + 1);
        max_y_l[0] = -inf;
        min_y_l[0] = inf;
        for (int i = 0; i < N; ++i) {
            max_y_l[i + 1] = min_y_l[i + 1] = C[i].second;
        }
        for (int i = 0; i < N; ++i) {
            max_y_l[i + 1] = std::max(max_y_l[i + 1], max_y_l[i]);
            min_y_l[i + 1] = std::min(min_y_l[i + 1], min_y_l[i]);
        }

        auto calc = [&](int m) -> std::pair<Answer, Answer> {
            const i64 max_x = C[m - 1].first, min_x = C[0].first;
            const i64 max_y = max_y_l[m], min_y = min_y_l[m];
            const i64 w = std::max(max_x - min_x, max_y - min_y);

            Answer res1;
            res1.width = w;
            res1.points[0] = std::make_tuple(max_x - w, min_y, max_x, min_y + w, w);

            for (int i = m; i < N; ++i) {
                C[i] = rotate(C[i].first, C[i].second);
            }
            std::sort(C.begin() + m, C.end());
            auto res2 = solve_k2sub(N - m, std::vector(C.begin() + m, C.end()));
            for (int i = m; i < N; ++i) {
                C[i] = reverse_rotate(C[i].first, C[i].second);
            }
            std::sort(C.begin() + m, C.end());
            for (int i = 0; i < K; ++i) {
                auto &[x1, y1, x2, y2, w] = res2.points[i];
                std::tie(x1, y1) = reverse_rotate(x1, y1);
                std::tie(x2, y2) = reverse_rotate(x2, y2);
            }
            return std::make_pair(res1, res2);
        };

        int ok = 0, ng = N;
        Answer ans;
        ans.width = inf;

        while (std::abs(ok - ng) > 1) {
            const auto mid = (ok + ng) / 2;
            int real_mid = mid;
            while (real_mid != 0 and C[real_mid - 1].first == C[real_mid].first) {
                --real_mid;
            }
            if (real_mid <= ok) {
                ok = mid;
                continue;
            }

            auto [res1, res2] = calc(real_mid);
            if (res1.width < res2.width) {
                ok = mid;
            } else {
                ng = mid;
            }

            res2.width = std::max(res1.width, res2.width);
            res2.points[2] = res1.points[0];
            ans = std::min(ans, res2);
        }

        return ans;
    };

    auto solve_k3_sub2 = [&]() {
        std::vector<std::pair<i64, i64>> C(N);
        for (int i = 0; i < N; ++i) {
            C[i] = {X[i], Y[i]};
        }
        std::sort(C.begin(), C.end());
        
        struct cord {
            i64 x;
            i64 y_max;
            i64 y_min;
        };
        std::vector<cord> D;
        D.push_back({C[0].first, C[0].second, C[0].second});
        for (int i = 1; i < N; ++i) {
            if (C[i].first == C[i - 1].first) {
                D.back().y_max = std::max(D.back().y_max, C[i].second);
                D.back().y_min = std::min(D.back().y_min, C[i].second);
            } else {
                D.push_back({C[i].first, C[i].second, C[i].second});
            }
        }
        const int M = (int)D.size();

        auto judge = [&](const i64 lw) -> Answer {
            std::vector<i64> max_y_l(M + 1), min_y_l(M + 1), max_y_r(M + 1), min_y_r(M + 1);
            max_y_l[0] = max_y_r[M] = -inf;
            min_y_l[0] = min_y_r[M] = inf;
            for (int i = 0; i < M; ++i) {
                max_y_l[i + 1] = D[i].y_max;
                min_y_l[i + 1] = D[i].y_min;
                max_y_r[i] = D[i].y_max;
                min_y_r[i] = D[i].y_min;
            }
            for (int i = 0; i < M; ++i) {
                max_y_l[i + 1] = std::max(max_y_l[i + 1], max_y_l[i]);
                min_y_l[i + 1] = std::min(min_y_l[i + 1], min_y_l[i]);
            }
            for (int i = M; i > 0; --i) {
                max_y_r[i - 1] = std::max(max_y_r[i - 1], max_y_r[i]);
                min_y_r[i - 1] = std::min(min_y_r[i - 1], min_y_r[i]);
            }

            int l = M, r = 0;
            for (int i = 0; i < M; ++i) {
                i64 w = std::max(max_y_l[i + 1] - min_y_l[i + 1], D[i].x - D[0].x);
                if (w > lw) {
                    l = i;
                    break;
                }
            }
            for (int i = M - 1; i >= 0; --i) {
                i64 w = std::max(max_y_r[i] - min_y_r[i], D[M - 1].x - D[i].x);
                if (w > lw) {
                    r = i + 1;
                    break;
                }
            }

            if (l == 0 or r == M) {
                Answer ret;
                ret.width = inf;
                return ret;
            }

            if (l >= r) {
                // solve_k2
                Answer ret;
                ret.width = inf - 1;
                return ret;
            }

            std::vector<i64> ymin(M - r, inf), ymax(M - r, -inf);
            for (int i = l; i < M - 1; ++i) {
                if (i < r) {
                    ymax[0] = std::max(ymax[0], D[i].y_max);
                    ymin[0] = std::min(ymin[0], D[i].y_min);
                } else {
                    ymax[i - r + 1] = std::max(ymax[i - r], D[i].y_max);
                    ymin[i - r + 1] = std::min(ymin[i - r], D[i].y_min);
                }
            }

            std::vector<T> seg_init(M - r);
            for (int i = r - 1; i < M - 1; ++i) {
                seg_init[i - r + 1] = std::make_pair((D[i].x - D[l - 1].x - 2) -
                                                    (ymax[i - r + 1] - ymin[i - r + 1]), i - r + 1);
            }
            lazy_segtree seg(seg_init);

            int max_er = 0, min_er = 0;
            i64 yma = ymax[0], ymi = ymin[0];
            for (int i = l - 1; i >= 0; --i) {
                auto itr = std::upper_bound(D.begin(), D.end(), cord{D[i + 1].x + lw, 0, 0},
                                             [&](auto &a, auto &b) {
                    return a.x < b.x;
                });
                int il = -1, ir = M - r;
                while (ir - il > 1) {
                    const auto mid = (il + ir) / 2;
                    if (D[mid + r - 1].x - D[i + 1].x <= lw and
                        std::max(yma, ymax[mid]) - std::min(ymi, ymin[mid]) <= lw) {
                        il = mid;
                    } else {
                        ir = mid;
                    }
                }

                if (ir <= 0) {
                    break;
                }
                const auto prod = seg.fold(0, ir);
                if (prod.first >= 0) {
                    const int j = prod.second + r;
                    if (j == M) {
                        Answer res;
                        res.width = inf - 1;
                        return res;
                    }

                    Answer res;
                    const i64 x_ma_1 = D[i].x, x_mi_1 = D[0].x;
                    const i64 x_ma_2 = D[j - 1].x, x_mi_2 = D[i + 1].x;
                    const i64 x_ma_3 = D[M - 1].x, x_mi_3 = D[j].x;
                    const i64 y_ma_1 = max_y_l[i + 1], y_mi_1 = min_y_l[i + 1];
                    const i64 y_ma_2 = std::max(ymax[j - r], yma), y_mi_2 = std::min(ymin[j - r], ymi);
                    const i64 y_ma_3 = max_y_r[j], y_mi_3 = min_y_r[j];

                    const i64 w1 = std::max({x_ma_1 - x_mi_1, y_ma_1 - y_mi_1, 1ll});
                    const i64 w2 = std::max({x_ma_2 - x_mi_2, y_ma_2 - y_mi_2, 1ll});
                    const i64 w3 = std::max({x_ma_3 - x_mi_3, y_ma_3 - y_mi_3, 1ll});
                    const i64 width = std::max({w1, w2, w3});
                    
                    if (width > lw) {
                        std::cout << prod.first << ' ' << prod.second << std::endl;
                        std::cout << M << std::endl;
                        std::cout << i << ' ' << j << ' ' << r << std::endl;
                        std::cout << x_ma_1 << ' ' << x_mi_1 << std::endl;
                        std::cout << x_ma_2 << ' ' << x_mi_2 << std::endl;
                        std::cout << x_ma_3 << ' ' << x_mi_3 << std::endl;
                        std::cout << y_ma_1 << ' ' << y_mi_1 << std::endl;
                        std::cout << y_ma_2 << ' ' << y_mi_2 << std::endl;
                        std::cout << y_ma_3 << ' ' << y_mi_3 << std::endl;
                        std::cout << w1 << ' ' << w2 << ' ' << w3 << ' ' << lw << std::endl;

                        std::cout << yma << ' ' << ymax[prod.second] << std::endl;
                        std::cout << ymi << ' ' << ymin[prod.second] << std::endl;
                    }
                    
                    assert(width <= lw);

                    if (w2 > x_mi_3 - x_ma_1 - 2) {
                        continue;
                    }

                    res.width = width;
                    res.points[0] = std::make_tuple(x_ma_1 - w1, y_mi_1, x_ma_1, y_mi_1 + w1, w1);
                    res.points[2] = std::make_tuple(x_mi_3, y_mi_3, x_ma_3 + w3, y_mi_3 + w3, w3);
                    i64 xmi2 = x_ma_1 + 1;
                    if (xmi2 + w2 < x_ma_2) {
                        xmi2 = x_ma_2 - w2;
                    }
                    res.points[1] = std::make_tuple(xmi2, y_mi_2, xmi2 + w2, y_mi_2 + w2, w2);

                    return res;
                }
                if (i == 0) {
                    break;
                }

                if (D[i].y_max > yma) {
                    seg.operate_range(0, max_er, -(D[i].y_max - yma));
                    while (max_er != M - r and ymax[max_er] < D[i].y_max) {
                        seg.operate_point(max_er, -(D[i].y_max - ymax[max_er]));
                        ++max_er;
                    }
                }
                if (D[i].y_min < ymi) {
                    seg.operate_range(0, min_er, -(ymi - D[i].y_min));
                    while (min_er != M - r and ymin[min_er] > D[i].y_min) {
                        seg.operate_point(min_er, -(ymin[min_er] - D[i].y_min));
                        ++min_er;
                    }
                }
                yma = std::max(yma, D[i].y_max);
                ymi = std::min(ymi, D[i].y_min);
                seg.operate_range(0, M - r, D[i].x - D[i - 1].x);
            }

            Answer ret;
            ret.width = inf;
            return ret;
        };

        i64 ok = 2 * limit, ng = 0;
        while (ok - ng > 1) {
            const auto mid = (ok + ng) / 2;
            const auto res = judge(mid);
            if (res.width != inf) {
                ok = mid;
            } else {
                ng = mid;
            }
        }

        return judge(ok);

        /*
        std::vector<std::vector<i64>> y_max(M, std::vector<i64>(M, -inf)), y_min(M, std::vector<i64>(M, inf));
        for (int l = 0; l < M; ++l) {
            i64 y_ma = D[l].y_max, y_mi = D[l].y_min;
            for (int r = l; r < M; ++r) {
                y_ma = std::max(y_ma, D[r].y_max);
                y_mi = std::min(y_mi, D[r].y_min);
                y_max[l][r] = y_ma;
                y_min[l][r] = y_mi;
            }
        }

        Answer ret;
        ret.width = inf;
        for (int i = 1; i < M; ++i) {
            for (int j = i + 1; j < M; ++j) {
                Answer res;
                const i64 x_ma_1 = D[i - 1].x, x_mi_1 = D[0].x;
                const i64 x_ma_2 = D[j - 1].x, x_mi_2 = D[i].x;
                const i64 x_ma_3 = D[M - 1].x, x_mi_3 = D[j].x;
                const i64 y_ma_1 = y_max[0][i - 1], y_mi_1 = y_min[0][i - 1];
                const i64 y_ma_2 = y_max[i][j - 1], y_mi_2 = y_min[i][j - 1];
                const i64 y_ma_3 = y_max[j][M - 1], y_mi_3 = y_min[j][M - 1];

                const i64 w1 = std::max({x_ma_1 - x_mi_1, y_ma_1 - y_mi_1, 1ll});
                const i64 w2 = std::max({x_ma_2 - x_mi_2, y_ma_2 - y_mi_2, 1ll});
                const i64 w3 = std::max({x_ma_3 - x_mi_3, y_ma_3 - y_mi_3, 1ll});
                const i64 width = std::max({w1, w2, w3});

                if (w2 > x_mi_3 - x_ma_1 - 2) {
                    continue;
                }

                res.width = width;
                if (res.width < ret.width) {
                    res.points[0] = std::make_tuple(x_ma_1 - w1, y_mi_1, x_ma_1, y_mi_1 + w1, w1);
                    res.points[2] = std::make_tuple(x_mi_3, y_mi_3, x_ma_3 + w3, y_mi_3 + w3, w3);
                    i64 xmi2 = x_ma_1 + 1;
                    if (xmi2 + w2 < x_ma_2) {
                        xmi2 = x_ma_2 - w2;
                    }
                    res.points[1] = std::make_tuple(xmi2, y_mi_2, xmi2 + w2, y_mi_2 + w2, w2);
                    ret = res;
                }
            }
        }

        return ret;
        */
    };

    auto solve_k3 = [&]() -> Answer {
        return std::min(solve_k3_sub1(), solve_k3_sub2());
    };

    auto solve = [&]() {
        if (K == 1) {
            return solve_k1();
        } else if (K == 2) {
            return std::min(solve_k1(), solve_k2());
        } else {
            return std::min({solve_k1(), solve_k2(), solve_k3()});
        }
    };

    auto rotate_all = [&]() {
        for (int i = 0; i < N; ++i) {
            std::tie(X[i], Y[i]) = rotate(X[i], Y[i]);
        }
    };

    auto reverse = [&](const i64 x) {
        return -x;
    };

    bool is_reversed = false;

    auto reverse_all = [&]() {
        for (int i = 0; i < N; ++i) {
            X[i] = reverse(X[i]);
        }
        is_reversed = not is_reversed;
    };

    auto fix = [&](const Answer ans, const int rotate_count) {
        Answer res = ans;
        if (is_reversed) {
            for (int i = 0; i < K; ++i) {
                std::get<0>(res.points[i]) = reverse(std::get<0>(res.points[i]));
                std::get<2>(res.points[i]) = reverse(std::get<2>(res.points[i]));
            }
        }
        for (int c = 0; c < rotate_count; ++c) {
            for (int i = 0; i < K; ++i) {
                auto &[x1, y1, x2, y2, w] = res.points[i];
                std::tie(x1, y1) = reverse_rotate(x1, y1);
                std::tie(x2, y2) = reverse_rotate(x2, y2);
            }
        }

        for (int i = 0; i < K; ++i) {
            auto &[x1, y1, x2, y2, w] = res.points[i];
            x1 = std::min(x1, x2);
            y1 = std::min(y1, y2);
            x2 = w;
        }
        return res;
    };

    Answer answer;
    answer.width = inf;
    for (int i = 0; i < 2; ++i) {
        answer = std::min(answer, fix(solve(), i));
        reverse_all();
        answer = std::min(answer, fix(solve(), i));
        reverse_all();
        rotate_all();
    }

    for (int i = 0; i < K; ++i) {
        std::cout << std::get<0>(answer.points[i]) << ' ';
        std::cout << std::get<1>(answer.points[i]) << ' ';
        std::cout << std::max(1ll, std::get<2>(answer.points[i])) << std::endl;
    }
}

Compilation message

izvanzemaljci.cpp: In lambda function:
izvanzemaljci.cpp:397:22: warning: variable 'itr' set but not used [-Wunused-but-set-variable]
  397 |                 auto itr = std::upper_bound(D.begin(), D.end(), cord{D[i + 1].x + lw, 0, 0},
      |                      ^~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 296 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 78 ms 2052 KB Output is correct
8 Correct 77 ms 2076 KB Output is correct
9 Correct 78 ms 2080 KB Output is correct
10 Correct 76 ms 2024 KB Output is correct
11 Correct 78 ms 2000 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 296 KB Output is correct
6 Correct 1 ms 300 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 296 KB Output is correct
9 Correct 1 ms 296 KB Output is correct
10 Correct 126 ms 8376 KB Output is correct
11 Correct 136 ms 8384 KB Output is correct
12 Correct 126 ms 8396 KB Output is correct
13 Correct 130 ms 8384 KB Output is correct
14 Correct 124 ms 8508 KB Output is correct
15 Correct 125 ms 8308 KB Output is correct
16 Correct 125 ms 8448 KB Output is correct
17 Correct 115 ms 7712 KB Output is correct
18 Correct 110 ms 7468 KB Output is correct
19 Correct 97 ms 6772 KB Output is correct
20 Correct 106 ms 7432 KB Output is correct
21 Correct 126 ms 8576 KB Output is correct
22 Correct 121 ms 8368 KB Output is correct
23 Correct 126 ms 8476 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 300 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 296 KB Output is correct
14 Correct 1 ms 296 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 300 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
23 Correct 0 ms 212 KB Output is correct
24 Correct 1 ms 212 KB Output is correct
25 Correct 1 ms 212 KB Output is correct
26 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 468 KB Output is correct
2 Correct 11 ms 468 KB Output is correct
3 Correct 12 ms 456 KB Output is correct
4 Correct 12 ms 468 KB Output is correct
5 Correct 8 ms 468 KB Output is correct
6 Correct 10 ms 444 KB Output is correct
7 Correct 9 ms 468 KB Output is correct
8 Correct 9 ms 484 KB Output is correct
9 Correct 12 ms 492 KB Output is correct
10 Correct 12 ms 476 KB Output is correct
11 Correct 11 ms 464 KB Output is correct
12 Correct 10 ms 508 KB Output is correct
13 Correct 8 ms 340 KB Output is correct
14 Correct 7 ms 468 KB Output is correct
15 Correct 7 ms 464 KB Output is correct
16 Correct 7 ms 456 KB Output is correct
17 Correct 8 ms 340 KB Output is correct
18 Correct 8 ms 436 KB Output is correct
19 Correct 8 ms 468 KB Output is correct
20 Correct 8 ms 440 KB Output is correct
21 Correct 9 ms 340 KB Output is correct
22 Correct 10 ms 340 KB Output is correct
23 Correct 6 ms 440 KB Output is correct
24 Correct 7 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 500 KB Output is correct
2 Correct 10 ms 468 KB Output is correct
3 Correct 10 ms 440 KB Output is correct
4 Correct 11 ms 468 KB Output is correct
5 Correct 10 ms 496 KB Output is correct
6 Correct 11 ms 444 KB Output is correct
7 Correct 8 ms 480 KB Output is correct
8 Correct 9 ms 432 KB Output is correct
9 Correct 12 ms 496 KB Output is correct
10 Correct 9 ms 468 KB Output is correct
11 Correct 9 ms 512 KB Output is correct
12 Correct 8 ms 468 KB Output is correct
13 Correct 10 ms 496 KB Output is correct
14 Correct 1205 ms 12544 KB Output is correct
15 Correct 1242 ms 12792 KB Output is correct
16 Correct 1112 ms 13424 KB Output is correct
17 Correct 1539 ms 16360 KB Output is correct
18 Correct 1265 ms 13924 KB Output is correct
19 Correct 1632 ms 14040 KB Output is correct
20 Correct 1456 ms 14040 KB Output is correct
21 Correct 878 ms 12004 KB Output is correct
22 Correct 1099 ms 13608 KB Output is correct
23 Correct 1292 ms 14092 KB Output is correct
24 Correct 1240 ms 13700 KB Output is correct
25 Correct 1343 ms 13860 KB Output is correct
26 Correct 994 ms 14616 KB Output is correct