Submission #670286

# Submission time Handle Problem Language Result Execution time Memory
670286 2022-12-08T14:51:28 Z Cyanmond Izvanzemaljci (COI21_izvanzemaljci) C++17
26 / 100
664 ms 26116 KB
#include <bits/stdc++.h>

using i64 = long long;

constexpr i64 inf = 1ll << 40;
constexpr i64 limit = 1000000000ll;

struct Answer {
    i64 width;
    std::array<std::tuple<i64, i64, i64, i64, i64>, 3> points;
};

bool operator <(const Answer &a, const Answer &b) {
    return a.width < b.width;
}

using T = std::pair<i64, int>;
using F = i64;

T operate(T a, T b) {
    return std::max(a, b);
}

T identity_T() {
    return std::make_pair(-inf, 0);
}

F composite(F a, F b) {
    return a + b;
}

T map(F a, T b) {
    return {b.first + a, b.second};
}

F identity_F() {
    return 0;
}

class lazy_segtree {
    int n, size, logn;
    std::vector<T> data;
    std::vector<F> lazy;

    void update(int i) {
        data[i] = operate(data[2 * i], data[2 * i + 1]);
    }

    void apply(int i, const F &v) {
        data[i] = map(v, data[i]);
        if (i < size) {
            lazy[i] = composite(lazy[i], v);
        }
    }

    void flush(int i) {
        apply(2 * i, lazy[i]);
        apply(2 * i + 1, lazy[i]);
        lazy[i] = identity_F();
    }

    void push1(int i) {
        for (int d = logn; d >= 1; --d) {
            if ((i >> d) << d != i) flush(i >> d);
        }
    }
    void push2(int i) {
        for (int d = logn; d >= 1; --d) {
            if ((i >> d) << d != i) flush((i - 1) >> d);
        }
    }

    void pull1(int i) {
        for (int d = 1; d <= logn; ++d) {
            if (((i >> d) << d) != i) update(i >> d);
        }
    }
    void pull2(int i) {
        for (int d = 1; d <= logn; ++d) {
            if (((i >> d) << d) != i) update((i - 1) >> d);
        }
    }
    
  public:
    lazy_segtree(std::vector<T> vec) : n(vec.size()) {
        size = 1;
        logn = 0;
        while (size < n) {
            ++logn;
            size *= 2;
        }
        data.assign(2 * size, identity_T());
        lazy.assign(size, identity_F());
        for (int i = 0; i < n; ++i) {
            data[i + size] = vec[i];
        }
        for (int i = size - 1; i >= 1; --i) {
            update(i);
        }
    }

    void operate_range(int l, int r, F x) {
        l += size;
        r += size;
        push1(l);
        push2(r);
        for (int l2 = l, r2 = r; l2 < r2; l2 /= 2, r2 /= 2) {
            if (l2 & 1) {
                apply(l2++, x);
            }
            if (r2 & 1) {
                apply(--r2, x);
            }
        }
        pull1(l);
        pull2(r);
    }

    void operate_point(int i, F x) {
        operate_range(i, i + 1, x);
    }

    T fold(int l, int r) {
        l += size;
        r += size;
        push1(l);
        push2(r);
        T ml = identity_T(), mr = identity_T();
        while (l < r) {
            if (l & 1) {
                ml = operate(ml, data[l++]);
            }
            if (r & 1) {
                mr = operate(data[--r], mr);
            }
            l /= 2;
            r /= 2;
        }
        return operate(ml, mr);
    }
};

int main() {
    int N, K;
    std::cin >> N >> K;
    std::vector<i64> X(N), Y(N);
    for (int i = 0; i < N; ++i) {
        std::cin >> X[i] >> Y[i];
    }

    auto rotate = [&](const i64 x, const i64 y) {
        return std::make_pair(y, -x);
    };

    auto reverse_rotate = [&](const i64 x, const i64 y) {
        return std::make_pair(-y, x);
    };


    auto solve_k1 = [&]() -> Answer {
        const i64 max_x = *std::max_element(X.begin(), X.end());
        const i64 min_x = *std::min_element(X.begin(), X.end());
        const i64 max_y = *std::max_element(Y.begin(), Y.end());
        const i64 min_y = *std::min_element(Y.begin(), Y.end());

        Answer ans;
        ans.width = std::max(max_x - min_x, max_y - min_y);
        ans.points[0] = std::make_tuple(min_x, min_y, max_x, max_y, ans.width);
        ans.points[1] = std::make_tuple(-3 * limit, -3 * limit, -3 * limit + 1, -3 * limit + 1, 1);
        ans.points[2] = std::make_tuple(3 * limit - 1, 3 * limit - 1, 3 * limit, 3 * limit, 1);
        return ans;
    };

    auto solve_k2sub = [](int N, std::vector<std::pair<i64, i64>> C) {
        std::vector<i64> max_y_l(N + 1), min_y_l(N + 1), max_y_r(N + 1), min_y_r(N + 1);
        max_y_l[0] = max_y_r[N] = -inf;
        min_y_l[0] = min_y_r[N] = inf;
        for (int i = 0; i < N; ++i) {
            max_y_l[i + 1] = min_y_l[i + 1] = C[i].second;
            max_y_r[i] = min_y_r[i] = C[i].second;
        }
        for (int i = 0; i < N; ++i) {
            max_y_l[i + 1] = std::max(max_y_l[i + 1], max_y_l[i]);
            min_y_l[i + 1] = std::min(min_y_l[i + 1], min_y_l[i]);
        }
        for (int i = N; i > 0; --i) {
            max_y_r[i - 1] = std::max(max_y_r[i - 1], max_y_r[i]);
            min_y_r[i - 1] = std::min(min_y_r[i - 1], min_y_r[i]);
        }

        Answer ret;
        ret.width = inf;
        for (int i = 1; i < N; ++i) {
            const i64 max_x1 = C[i - 1].first, min_x1 = C[0].first;
            const i64 max_x2 = C[N - 1].first, min_x2 = C[i].first;
            const i64 max_y1 = max_y_l[i], min_y1 = min_y_l[i];
            const i64 max_y2 = max_y_r[i], min_y2 = min_y_r[i];
            if (C[i - 1].first == C[i].first) {
                if (std::max(min_y1, min_y2) <= std::min(max_y1, max_y2)) {
                    continue;
                }
            }

            Answer cp;
            const i64 w1 = std::max({max_x1 - min_x1, max_y1 - min_y1, 1ll});
            const i64 w2 = std::max({max_x2 - min_x2, max_y2 - min_y2, 1ll});

            cp.points[0] = std::make_tuple(max_x1 - w1, max_y1 - w1, max_x1, max_y1, w1);
            cp.points[1] = std::make_tuple(min_x2, max_y2 - w2, min_x2 + w2, max_y2, w2);
            cp.width = std::max(w1, w2);

            ret = std::min(ret, cp);
        }

        return ret;
    };

    auto solve_k2 = [&]() -> Answer {
        std::vector<std::pair<i64, i64>> C(N);
        for (int i = 0; i < N; ++i) {
            C[i] = {X[i], Y[i]};
        }
        std::sort(C.begin(), C.end());

        auto ret = solve_k2sub(N, C);
        ret.points[2] = std::make_tuple(-3 * limit, -3 * limit, -3 * limit + 1, -3 * limit + 1, 1);
        return ret;
    };

    auto solve_k3_sub1 = [&]() {
        std::vector<std::pair<i64, i64>> C(N);
        for (int i = 0; i < N; ++i) {
            C[i] = {X[i], Y[i]};
        }
        std::sort(C.begin(), C.end());

        std::vector<i64> max_y_l(N + 1), min_y_l(N + 1);
        max_y_l[0] = -inf;
        min_y_l[0] = inf;
        for (int i = 0; i < N; ++i) {
            max_y_l[i + 1] = min_y_l[i + 1] = C[i].second;
        }
        for (int i = 0; i < N; ++i) {
            max_y_l[i + 1] = std::max(max_y_l[i + 1], max_y_l[i]);
            min_y_l[i + 1] = std::min(min_y_l[i + 1], min_y_l[i]);
        }

        auto calc = [&](int m) -> std::pair<Answer, Answer> {
            const i64 max_x = C[m - 1].first, min_x = C[0].first;
            const i64 max_y = max_y_l[m], min_y = min_y_l[m];
            const i64 w = std::max(max_x - min_x, max_y - min_y);

            Answer res1;
            res1.width = w;
            res1.points[0] = std::make_tuple(max_x - w, min_y, max_x, min_y + w, w);

            for (int i = m; i < N; ++i) {
                C[i] = rotate(C[i].first, C[i].second);
            }
            std::sort(C.begin() + m, C.end());
            auto res2 = solve_k2sub(N - m, std::vector(C.begin() + m, C.end()));
            for (int i = m; i < N; ++i) {
                C[i] = reverse_rotate(C[i].first, C[i].second);
            }
            std::sort(C.begin() + m, C.end());
            for (int i = 0; i < K; ++i) {
                auto &[x1, y1, x2, y2, w] = res2.points[i];
                std::tie(x1, y1) = reverse_rotate(x1, y1);
                std::tie(x2, y2) = reverse_rotate(x2, y2);
            }
            return std::make_pair(res1, res2);
        };

        int ok = 0, ng = N;
        Answer ans;
        ans.width = inf;

        while (std::abs(ok - ng) > 1) {
            const auto mid = (ok + ng) / 2;
            int real_mid = mid;
            while (real_mid != 0 and C[real_mid - 1].first == C[real_mid].first) {
                --real_mid;
            }
            if (real_mid <= ok) {
                ok = mid;
                continue;
            }

            auto [res1, res2] = calc(real_mid);
            if (res1.width < res2.width) {
                ok = mid;
            } else {
                ng = mid;
            }

            res2.width = std::max(res1.width, res2.width);
            res2.points[2] = res1.points[0];
            ans = std::min(ans, res2);
        }

        return ans;
    };

    auto solve_k3_sub2 = [&]() {
        std::vector<std::pair<i64, i64>> C(N);
        for (int i = 0; i < N; ++i) {
            C[i] = {X[i], Y[i]};
        }
        std::sort(C.begin(), C.end());
        
        struct cord {
            i64 x;
            i64 y_max;
            i64 y_min;
        };
        std::vector<cord> D;
        D.push_back({C[0].first, C[0].second, C[0].second});
        for (int i = 1; i < N; ++i) {
            if (C[i].first == C[i - 1].first) {
                D.back().y_max = std::max(D.back().y_max, C[i].second);
                D.back().y_min = std::min(D.back().y_min, C[i].second);
            } else {
                D.push_back({C[i].first, C[i].second, C[i].second});
            }
        }
        const int M = (int)D.size();

        auto judge = [&](const i64 lw) -> Answer {
            std::vector<i64> max_y_l(M + 1), min_y_l(M + 1), max_y_r(M + 1), min_y_r(M + 1);
            max_y_l[0] = max_y_r[M] = -inf;
            min_y_l[0] = min_y_r[M] = inf;
            for (int i = 0; i < M; ++i) {
                max_y_l[i + 1] = D[i].y_max;
                min_y_l[i + 1] = D[i].y_min;
                max_y_r[i] = D[i].y_max;
                min_y_r[i] = D[i].y_min;
            }
            for (int i = 0; i < M; ++i) {
                max_y_l[i + 1] = std::max(max_y_l[i + 1], max_y_l[i]);
                min_y_l[i + 1] = std::min(min_y_l[i + 1], min_y_l[i]);
            }
            for (int i = M; i > 0; --i) {
                max_y_r[i - 1] = std::max(max_y_r[i - 1], max_y_r[i]);
                min_y_r[i - 1] = std::min(min_y_r[i - 1], min_y_r[i]);
            }

            int l = M, r = 0;
            for (int i = 0; i < M; ++i) {
                i64 w = std::max(max_y_l[i + 1] - min_y_l[i + 1], D[i].x - D[0].x);
                if (w > lw) {
                    l = i;
                    break;
                }
            }
            for (int i = M - 1; i >= 0; --i) {
                i64 w = std::max(max_y_r[i] - min_y_r[i], D[M - 1].x - D[i].x);
                if (w > lw) {
                    r = i + 1;
                    break;
                }
            }

            if (l == 0 or r == M) {
                Answer ret;
                ret.width = inf;
                return ret;
            }

            if (l >= r) {
                // solve_k2
                Answer ret;
                ret.width = inf - 1;
                return ret;
            }

            std::vector<i64> ymin(M - r, inf), ymax(M - r, -inf);
            for (int i = l; i < M - 1; ++i) {
                if (i < r) {
                    ymax[0] = std::max(ymax[0], D[i].y_max);
                    ymin[0] = std::min(ymin[0], D[i].y_min);
                } else {
                    ymax[i - r + 1] = std::max(ymax[i - r], D[i].y_max);
                    ymin[i - r + 1] = std::min(ymin[i - r], D[i].y_min);
                }
            }

            std::vector<T> seg_init(M - r);
            for (int i = r - 1; i < M - 1; ++i) {
                seg_init[i - r + 1] = std::make_pair((D[i].x - D[l - 1].x - 2) -
                                                    (ymax[i - r + 1] - ymin[i - r + 1]), i - r + 1);
            }
            lazy_segtree seg(seg_init);

            int max_er = 0, min_er = 0;
            i64 yma = ymax[0], ymi = ymin[0];
            for (int i = l - 1; i >= 0; --i) {
                auto itr = std::upper_bound(D.begin(), D.end(), cord{D[i + 1].x + lw, 0, 0},
                                             [&](auto &a, auto &b) {
                    return a.x < b.x;
                });
                int il = -1, ir = M - r;
                while (ir - il > 1) {
                    const auto mid = (il + ir) / 2;
                    if (D[mid + r - 1].x <= lw and std::max(yma, ymax[mid]) - std::min(ymi, ymin[mid]) <= lw) {
                        il = mid;
                    } else {
                        ir = mid;
                    }
                }

                if (ir <= 0) {
                    break;
                }
                const auto prod = seg.fold(0, ir);
                if (prod.first >= 0) {
                    const int j = prod.second + r;
                    if (j == M) {
                        Answer res;
                        res.width = inf - 1;
                        return res;
                    }

                    Answer res;
                    const i64 x_ma_1 = D[i].x, x_mi_1 = D[0].x;
                    const i64 x_ma_2 = D[j - 1].x, x_mi_2 = D[i + 1].x;
                    const i64 x_ma_3 = D[M - 1].x, x_mi_3 = D[j].x;
                    const i64 y_ma_1 = max_y_l[i + 1], y_mi_1 = min_y_l[i + 1];
                    const i64 y_ma_2 = std::max(ymax[j - r], yma), y_mi_2 = std::min(ymin[j - r], ymi);
                    const i64 y_ma_3 = max_y_r[j], y_mi_3 = min_y_r[j];

                    const i64 w1 = std::max({x_ma_1 - x_mi_1, y_ma_1 - y_mi_1, 1ll});
                    const i64 w2 = std::max({x_ma_2 - x_mi_2, y_ma_2 - y_mi_2, 1ll});
                    const i64 w3 = std::max({x_ma_3 - x_mi_3, y_ma_3 - y_mi_3, 1ll});
                    const i64 width = std::max({w1, w2, w3});
                    /*
                    if (width > lw) {
                        std::cout << prod.first << ' ' << prod.second << std::endl;
                        std::cout << M << std::endl;
                        std::cout << i << ' ' << j << ' ' << r << std::endl;
                        std::cout << x_ma_1 << ' ' << x_mi_1 << std::endl;
                        std::cout << x_ma_2 << ' ' << x_mi_2 << std::endl;
                        std::cout << x_ma_3 << ' ' << x_mi_3 << std::endl;
                        std::cout << y_ma_1 << ' ' << y_mi_1 << std::endl;
                        std::cout << y_ma_2 << ' ' << y_mi_2 << std::endl;
                        std::cout << y_ma_3 << ' ' << y_mi_3 << std::endl;
                        std::cout << w1 << ' ' << w2 << ' ' << w3 << ' ' << lw << std::endl;

                        std::cout << yma << ' ' << ymax[prod.second] << std::endl;
                        std::cout << ymi << ' ' << ymin[prod.second] << std::endl;
                    }
                    */
                    assert(width <= lw);

                    if (w2 > x_mi_3 - x_ma_1 - 2) {
                        continue;
                    }

                    res.width = width;
                    res.points[0] = std::make_tuple(x_ma_1 - w1, y_mi_1, x_ma_1, y_mi_1 + w1, w1);
                    res.points[2] = std::make_tuple(x_mi_3, y_mi_3, x_ma_3 + w3, y_mi_3 + w3, w3);
                    i64 xmi2 = x_ma_1 + 1;
                    if (xmi2 + w2 < x_ma_2) {
                        xmi2 = x_ma_2 - w2;
                    }
                    res.points[1] = std::make_tuple(xmi2, y_mi_2, xmi2 + w2, y_mi_2 + w2, w2);

                    return res;
                }
                if (i == 0) {
                    break;
                }

                if (D[i].y_max > yma) {
                    seg.operate_range(0, max_er, -(D[i].y_max - yma));
                    while (max_er != M - r and ymax[max_er] < D[i].y_max) {
                        seg.operate_point(max_er, -(D[i].y_max - ymax[max_er]));
                        ++max_er;
                    }
                }
                if (D[i].y_min < ymi) {
                    seg.operate_range(0, min_er, -(ymi - D[i].y_min));
                    while (min_er != M - r and ymin[min_er] > D[i].y_min) {
                        seg.operate_point(min_er, -(ymin[min_er] - D[i].y_min));
                        ++min_er;
                    }
                }
                yma = std::max(yma, D[i].y_max);
                ymi = std::min(ymi, D[i].y_min);
                seg.operate_range(0, M - r, D[i].x - D[i - 1].x);
            }

            Answer ret;
            ret.width = inf;
            return ret;
        };

        i64 ok = 2 * limit, ng = 0;
        while (ok - ng > 1) {
            const auto mid = (ok + ng) / 2;
            const auto res = judge(mid);
            if (res.width != inf) {
                ok = mid;
            } else {
                ng = mid;
            }
        }

        return judge(ok);

        /*
        std::vector<std::vector<i64>> y_max(M, std::vector<i64>(M, -inf)), y_min(M, std::vector<i64>(M, inf));
        for (int l = 0; l < M; ++l) {
            i64 y_ma = D[l].y_max, y_mi = D[l].y_min;
            for (int r = l; r < M; ++r) {
                y_ma = std::max(y_ma, D[r].y_max);
                y_mi = std::min(y_mi, D[r].y_min);
                y_max[l][r] = y_ma;
                y_min[l][r] = y_mi;
            }
        }

        Answer ret;
        ret.width = inf;
        for (int i = 1; i < M; ++i) {
            for (int j = i + 1; j < M; ++j) {
                Answer res;
                const i64 x_ma_1 = D[i - 1].x, x_mi_1 = D[0].x;
                const i64 x_ma_2 = D[j - 1].x, x_mi_2 = D[i].x;
                const i64 x_ma_3 = D[M - 1].x, x_mi_3 = D[j].x;
                const i64 y_ma_1 = y_max[0][i - 1], y_mi_1 = y_min[0][i - 1];
                const i64 y_ma_2 = y_max[i][j - 1], y_mi_2 = y_min[i][j - 1];
                const i64 y_ma_3 = y_max[j][M - 1], y_mi_3 = y_min[j][M - 1];

                const i64 w1 = std::max({x_ma_1 - x_mi_1, y_ma_1 - y_mi_1, 1ll});
                const i64 w2 = std::max({x_ma_2 - x_mi_2, y_ma_2 - y_mi_2, 1ll});
                const i64 w3 = std::max({x_ma_3 - x_mi_3, y_ma_3 - y_mi_3, 1ll});
                const i64 width = std::max({w1, w2, w3});

                if (w2 > x_mi_3 - x_ma_1 - 2) {
                    continue;
                }

                res.width = width;
                if (res.width < ret.width) {
                    res.points[0] = std::make_tuple(x_ma_1 - w1, y_mi_1, x_ma_1, y_mi_1 + w1, w1);
                    res.points[2] = std::make_tuple(x_mi_3, y_mi_3, x_ma_3 + w3, y_mi_3 + w3, w3);
                    i64 xmi2 = x_ma_1 + 1;
                    if (xmi2 + w2 < x_ma_2) {
                        xmi2 = x_ma_2 - w2;
                    }
                    res.points[1] = std::make_tuple(xmi2, y_mi_2, xmi2 + w2, y_mi_2 + w2, w2);
                    ret = res;
                }
            }
        }

        return ret;
        */
    };

    auto solve_k3 = [&]() -> Answer {
        return std::min(solve_k3_sub1(), solve_k3_sub2());
    };

    auto solve = [&]() {
        if (K == 1) {
            return solve_k1();
        } else if (K == 2) {
            return std::min(solve_k1(), solve_k2());
        } else {
            return std::min({solve_k1(), solve_k2(), solve_k3()});
        }
    };

    auto rotate_all = [&]() {
        for (int i = 0; i < N; ++i) {
            std::tie(X[i], Y[i]) = rotate(X[i], Y[i]);
        }
    };

    auto reverse = [&](const i64 x) {
        return -x;
    };

    bool is_reversed = false;

    auto reverse_all = [&]() {
        for (int i = 0; i < N; ++i) {
            X[i] = reverse(X[i]);
        }
        is_reversed = not is_reversed;
    };

    auto fix = [&](const Answer ans, const int rotate_count) {
        Answer res = ans;
        if (is_reversed) {
            for (int i = 0; i < K; ++i) {
                std::get<0>(res.points[i]) = reverse(std::get<0>(res.points[i]));
                std::get<2>(res.points[i]) = reverse(std::get<2>(res.points[i]));
            }
        }
        for (int c = 0; c < rotate_count; ++c) {
            for (int i = 0; i < K; ++i) {
                auto &[x1, y1, x2, y2, w] = res.points[i];
                std::tie(x1, y1) = reverse_rotate(x1, y1);
                std::tie(x2, y2) = reverse_rotate(x2, y2);
            }
        }

        for (int i = 0; i < K; ++i) {
            auto &[x1, y1, x2, y2, w] = res.points[i];
            x1 = std::min(x1, x2);
            y1 = std::min(y1, y2);
            x2 = w;
        }
        return res;
    };

    Answer answer;
    answer.width = inf;
    for (int i = 0; i < 2; ++i) {
        answer = std::min(answer, fix(solve(), i));
        reverse_all();
        answer = std::min(answer, fix(solve(), i));
        reverse_all();
        rotate_all();
    }

    for (int i = 0; i < K; ++i) {
        std::cout << std::get<0>(answer.points[i]) << ' ';
        std::cout << std::get<1>(answer.points[i]) << ' ';
        std::cout << std::max(1ll, std::get<2>(answer.points[i])) << std::endl;
    }
}

Compilation message

izvanzemaljci.cpp: In lambda function:
izvanzemaljci.cpp:397:22: warning: variable 'itr' set but not used [-Wunused-but-set-variable]
  397 |                 auto itr = std::upper_bound(D.begin(), D.end(), cord{D[i + 1].x + lw, 0, 0},
      |                      ^~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 77 ms 1856 KB Output is correct
8 Correct 76 ms 1876 KB Output is correct
9 Correct 75 ms 1856 KB Output is correct
10 Correct 80 ms 1876 KB Output is correct
11 Correct 78 ms 1748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 125 ms 8052 KB Output is correct
11 Correct 120 ms 8132 KB Output is correct
12 Correct 120 ms 8048 KB Output is correct
13 Correct 123 ms 8124 KB Output is correct
14 Correct 121 ms 8144 KB Output is correct
15 Correct 124 ms 8032 KB Output is correct
16 Correct 121 ms 8136 KB Output is correct
17 Correct 112 ms 7452 KB Output is correct
18 Correct 107 ms 7188 KB Output is correct
19 Correct 96 ms 6580 KB Output is correct
20 Correct 105 ms 7016 KB Output is correct
21 Correct 121 ms 8124 KB Output is correct
22 Correct 123 ms 8128 KB Output is correct
23 Correct 119 ms 8128 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Runtime error 1 ms 468 KB Execution killed with signal 6
10 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 12 ms 468 KB Output is correct
2 Correct 11 ms 468 KB Output is correct
3 Correct 12 ms 340 KB Output is correct
4 Correct 12 ms 468 KB Output is correct
5 Correct 8 ms 468 KB Output is correct
6 Correct 8 ms 468 KB Output is correct
7 Correct 9 ms 488 KB Output is correct
8 Correct 9 ms 484 KB Output is correct
9 Correct 11 ms 468 KB Output is correct
10 Correct 12 ms 472 KB Output is correct
11 Correct 10 ms 440 KB Output is correct
12 Correct 10 ms 464 KB Output is correct
13 Correct 8 ms 468 KB Output is correct
14 Correct 8 ms 468 KB Output is correct
15 Correct 7 ms 460 KB Output is correct
16 Correct 7 ms 468 KB Output is correct
17 Correct 9 ms 340 KB Output is correct
18 Correct 8 ms 436 KB Output is correct
19 Correct 9 ms 468 KB Output is correct
20 Correct 8 ms 472 KB Output is correct
21 Correct 11 ms 440 KB Output is correct
22 Correct 10 ms 444 KB Output is correct
23 Runtime error 3 ms 596 KB Execution killed with signal 6
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 468 KB Output is correct
2 Correct 11 ms 468 KB Output is correct
3 Correct 10 ms 444 KB Output is correct
4 Correct 11 ms 484 KB Output is correct
5 Correct 10 ms 512 KB Output is correct
6 Correct 10 ms 508 KB Output is correct
7 Correct 8 ms 496 KB Output is correct
8 Correct 9 ms 500 KB Output is correct
9 Correct 12 ms 492 KB Output is correct
10 Correct 9 ms 488 KB Output is correct
11 Correct 8 ms 468 KB Output is correct
12 Correct 8 ms 468 KB Output is correct
13 Correct 10 ms 400 KB Output is correct
14 Runtime error 664 ms 26116 KB Execution killed with signal 6
15 Halted 0 ms 0 KB -