Submission #66901

# Submission time Handle Problem Language Result Execution time Memory
66901 2018-08-12T18:35:02 Z cdemirer Dango Maker (JOI18_dango_maker) C++17
33 / 100
2000 ms 263168 KB
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<vii> vvii;
typedef vector<vi> vvi;
typedef pair<double, double> dodo;
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define INF 1000000005

#define TYPE ii
typedef struct Node {
	TYPE k;
	int p;
	Node *l, *r;
	int sz;
	TYPE mn;
	Node(TYPE param) {
		k = param;
		p = rand();
		l = r = 0;
		sz = 1;
		mn = param;
	}
} Node;
typedef pair<Node*, Node*> NodepNodep;
void update(Node *x) {
	if (!x) return;
	x->sz = (x->l ? x->l->sz : 0) + 1 + (x->r ? x->r->sz : 0);
	x->mn = (x->l ? x->l->mn : x->k);
}
NodepNodep split(Node *r, TYPE k) {
	NodepNodep nn;
	if (!r) {
		nn.first = nn.second = nullptr;
	} else if (k <= r->k) {
		nn.second = r;
		NodepNodep res = split(r->l, k);
		nn.first = res.first;
		r->l = res.second;
		update(nn.first);
		update(nn.second);
	} else {
		nn.first = r;
		NodepNodep res = split(r->r, k);
		r->r = res.first;
		nn.second = res.second;
		update(nn.first);
		update(nn.second);
	}
	return nn;
}
NodepNodep splitAlt(Node *r, int ind) {
	NodepNodep nn;
	if (!r) {
		nn.first = nn.second = nullptr;
	} else if ((r->l ? r->l->sz : 0) >= ind) {
		nn.second = r;
		NodepNodep res = splitAlt(r->l, ind);
		nn.first = res.first;
		r->l = res.second;
		update(nn.first);
		update(nn.second);
	} else {
		nn.first = r;
		NodepNodep res = splitAlt(r->r, ind-1-(r->l ? r->l->sz : 0));
		r->r = res.first;
		nn.second = res.second;
		update(nn.first);
		update(nn.second);
	}
	return nn;
}
bool exists(Node *r, TYPE k) {
	if (!r) return false;
	else if (r->k == k) return true;
	else if (k < r->k) return exists(r->l, k);
	else return exists(r->r, k);
}
Node* insert(Node *r, Node *n) {
	Node *ret;
	if (!r) {
		ret = n;
		update(ret);
	} else if (n->p > r->p) {
		NodepNodep res = split(r, n->k);
		n->l = res.first;
		n->r = res.second;
		ret = n;
		update(ret);
	} else {
		if (n->k < r->k) {
			r->l = insert(r->l, n);
		} else {
			r->r = insert(r->r, n);
		}
		ret = r;
		update(ret);
	}
	return ret;
}
Node* merge(Node *l, Node *r) {
	Node *ret;
	if (!l) ret = r;
	else if (!r) ret = l;
	else {
		if (l->p > r->p) {
			Node *res = merge(l->r, r);
			l->r = res;
			ret = l;
		} else {
			Node *res = merge(l, r->l);
			r->l = res;
			ret = r;
		}
		update(ret);
	}
	return ret;
}
Node* erase(Node *r, TYPE k) {
	Node *ret;
	if (!r) ret = nullptr;
	else if (r->k == k) {
		ret = merge(r->l, r->r);
		update(ret);
	} else {
		if (k < r->k) {
			r->l = erase(r->l, k);
		} else {
			r->r = erase(r->r, k);
		}
		ret = r;
		update(ret);
	}
	return ret;
}
/*void traversePrint(Node *r) {
	if (!r) return;
	if (r->l) traversePrint(r->l);
	cerr << r->k << " (" << r->p << ")   ";
	if (r->r) traversePrint(r->r);
}*/
#undef TYPE


int N, M;

vvi edges;
int num_nodes = 0;
int createNode() {
	edges.pb(vi());
	return num_nodes++;
}
void connect(int a, int b) {
	edges[a].pb(b);
	edges[b].pb(a);
}

const int ARRSIZE = 3000*3000;
int parent[ARRSIZE];
bool vis[ARRSIZE] = {0};
int bfs(int x, bool b) {
	int ret = 0;
	queue<ii> Q;
	Q.push(mp(x, (int)b));
	while (!Q.empty()) {
		ii a = Q.front(); Q.pop();
		if (vis[a.first]) {
			continue;
		}
		vis[a.first] = true;
		ret += a.second;
		for (int i = 0; i < edges[a.first].size(); i++) {
			int y = edges[a.first][i];
			Q.push(mp(y, !a.second));
		}
	}
	return ret;
}
void clean(int x) {
	vis[x] = false;
	for (int i = 0; i < edges[x].size(); i++) {
		int y = edges[x][i];
		if (!vis[y]) continue;
		clean(y);
	}
}	

int mat[3000][3000];
int touch[3000][3000][2];
void func() {
	
	cin >> N >> M;
	for (int i = 0; i < N; i++) {
		string s; cin >> s;
		for (int j = 0; j < M; j++) {
			if (s[j] == 'R') mat[i][j] = 0;
			if (s[j] == 'G') mat[i][j] = 1;
			if (s[j] == 'W') mat[i][j] = 2;
		}
	}
	for (int i = 0; i < N; i++) for (int j = 0; j < M; j++) touch[i][j][0] = touch[i][j][1] = -1;
	for (int i = 0; i < N; i++) {
		for (int j = 0; j < M-2; j++) {
			if (mat[i][j]*9 + mat[i][j+1]*3 + mat[i][j+2]*1 == 5) {
				int x = createNode();
				/*if (touch[i][j].size() > 0) {
					for (int k = 0; k < touch[i][j].size(); k++) connect(x, touch[i][j][k]);
				}*/
				if (touch[i][j][0] != -1) touch[i][j][1] = x;
				else touch[i][j][0] = x;
				//touch[i][j].pb(x);
				/*if (touch[i][j+1].size() > 0) {
					for (int k = 0; k < touch[i][j+1].size(); k++) connect(x, touch[i][j+1][k]);
				}*/
				if (touch[i][j+1][0] != -1) touch[i][j+1][1] = x;
				else touch[i][j+1][0] = x;
				//touch[i][j+1].pb(x);
				/*if (touch[i][j+2].size() > 0) {
					for (int k = 0; k < touch[i][j+2].size(); k++) connect(x, touch[i][j+2][k]);
				}*/
				if (touch[i][j+2][0] != -1) touch[i][j+2][1] = x;
				else touch[i][j+2][0] = x;
				//touch[i][j+2].pb(x);
			}
		}
	}
	for (int i = 0; i < N-2; i++) {
		for (int j = 0; j < M; j++) {
			if (mat[i][j]*9 + mat[i+1][j]*3 + mat[i+2][j]*1 == 5) {
				int x = createNode();
				//if (touch[i][j].size() > 0) {
				//for (int k = 0; k < touch[i][j].size(); k++) connect(x, touch[i][j][k]);
				if (touch[i][j][0] != -1) connect(x, touch[i][j][0]);
				if (touch[i][j][1] != -1) connect(x, touch[i][j][1]);
				//}
				//touch[i][j].pb(x);
				//if (touch[i+1][j].size() > 0) {
				//for (int k = 0; k < touch[i+1][j].size(); k++) connect(x, touch[i+1][j][k]);
				if (touch[i+1][j][0] != -1) connect(x, touch[i+1][j][0]);
				if (touch[i+1][j][1] != -1) connect(x, touch[i+1][j][1]);
				//}
				//touch[i+1][j].pb(x);
				//if (touch[i+2][j].size() > 0) {
				//for (int k = 0; k < touch[i+2][j].size(); k++) connect(x, touch[i+2][j][k]);
				if (touch[i+2][j][0] != -1) connect(x, touch[i+2][j][0]);
				if (touch[i+2][j][1] != -1) connect(x, touch[i+2][j][1]);
				//}
				//touch[i+2][j].pb(x);
			}
		}
	}
}

int count_component(int x) {
	vis[x] = true;
	int ret = 1;
	for (int i = 0; i < edges[x].size(); i++) {
		int y = edges[x][i];
		if (vis[y]) continue;
		ret += count_component(y);
	}
	return ret;
}

int es[ARRSIZE] = {0};
int main(int argc, char **argv) {
	ios_base::sync_with_stdio(0);
	cin.tie(0);
	
	func();
	
	//if (N > 2999 && M > 2999) exit(-1);
	
	/*int sum = 0;
	set<ii> S;
	for (int i = 0; i < num_nodes; i++) es[i] = edges[i].size();
	for (int i = 0; i < num_nodes; i++) S.insert(mp(es[i], i));
	while (!S.empty()) {
		int x = (*S.begin()).second;
		S.erase(S.begin());
		for (int i = 0; i < edges[x].size(); i++) {
			int y = edges[x][i];
			auto it = S.find(mp(es[y], y));
			if (it != S.end()) {
				S.erase(it);
				for (int j = 0; j < edges[y].size(); j++) {
					int y2 = edges[y][j];
					auto it2 = S.find(mp(es[y2], y2));
					if (it2 != S.end()) {
						S.erase(it2);
						es[y2]--;
						S.insert(mp(es[y2], y2));
					}
				}
			}
		}
		sum++;
	}*/
	assert(num_nodes < 1000000);
	int sum = 0;
	srand(time(0));
	Node *root = nullptr;
	for (int i = 0; i < num_nodes; i++) es[i] = edges[i].size();
	for (int i = 0; i < num_nodes; i++) {
		Node *n = new Node(mp(es[i], i));
		root = insert(root, n);
	}
	while (root != nullptr) {
		int x = root->mn.second;
		root = erase(root, mp(es[x], x));
		for (int i = 0; i < edges[x].size(); i++) {
			int y = edges[x][i];
			if (exists(root, mp(es[y], y))) {
				root = erase(root, mp(es[y], y));
				for (int j = 0; j < edges[y].size(); j++) {
					int y2 = edges[y][j];
					if (exists(root, mp(es[y2], y2))) {
						root = erase(root, mp(es[y2], y2));
						es[y2]--;
						Node *n = new Node(mp(es[y2], y2));
						root = insert(root, n);
					}
				}
			}
		}
		sum++;
	}
	/*for (int i = 0; i < num_nodes; i++) {
		if (vis[i]) continue;
		int a = bfs(i, true);
		clean(i);
		int b = bfs(i, false);
		assert(abs(a-b) <= 1);
		sum += max(a, b);
	}*/
	cout << sum << endl;
	
	return 0;
}

Compilation message

dango_maker.cpp: In function 'int bfs(int, bool)':
dango_maker.cpp:176:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for (int i = 0; i < edges[a.first].size(); i++) {
                   ~~^~~~~~~~~~~~~~~~~~~~~~~
dango_maker.cpp: In function 'void clean(int)':
dango_maker.cpp:185:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  for (int i = 0; i < edges[x].size(); i++) {
                  ~~^~~~~~~~~~~~~~~~~
dango_maker.cpp: In function 'int count_component(int)':
dango_maker.cpp:261:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  for (int i = 0; i < edges[x].size(); i++) {
                  ~~^~~~~~~~~~~~~~~~~
dango_maker.cpp: In function 'int main(int, char**)':
dango_maker.cpp:315:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for (int i = 0; i < edges[x].size(); i++) {
                   ~~^~~~~~~~~~~~~~~~~
dango_maker.cpp:319:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int j = 0; j < edges[y].size(); j++) {
                     ~~^~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 412 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 2 ms 468 KB Output is correct
6 Correct 2 ms 484 KB Output is correct
7 Correct 3 ms 612 KB Output is correct
8 Correct 2 ms 680 KB Output is correct
9 Correct 2 ms 680 KB Output is correct
10 Correct 2 ms 680 KB Output is correct
11 Correct 2 ms 680 KB Output is correct
12 Correct 2 ms 680 KB Output is correct
13 Correct 2 ms 680 KB Output is correct
14 Correct 2 ms 680 KB Output is correct
15 Correct 2 ms 680 KB Output is correct
16 Correct 2 ms 680 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 412 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 2 ms 468 KB Output is correct
6 Correct 2 ms 484 KB Output is correct
7 Correct 3 ms 612 KB Output is correct
8 Correct 2 ms 680 KB Output is correct
9 Correct 2 ms 680 KB Output is correct
10 Correct 2 ms 680 KB Output is correct
11 Correct 2 ms 680 KB Output is correct
12 Correct 2 ms 680 KB Output is correct
13 Correct 2 ms 680 KB Output is correct
14 Correct 2 ms 680 KB Output is correct
15 Correct 2 ms 680 KB Output is correct
16 Correct 2 ms 680 KB Output is correct
17 Correct 2 ms 680 KB Output is correct
18 Correct 2 ms 680 KB Output is correct
19 Correct 2 ms 680 KB Output is correct
20 Correct 2 ms 680 KB Output is correct
21 Correct 2 ms 680 KB Output is correct
22 Correct 2 ms 680 KB Output is correct
23 Correct 2 ms 680 KB Output is correct
24 Correct 3 ms 680 KB Output is correct
25 Correct 2 ms 680 KB Output is correct
26 Correct 3 ms 680 KB Output is correct
27 Correct 2 ms 680 KB Output is correct
28 Correct 3 ms 680 KB Output is correct
29 Correct 2 ms 680 KB Output is correct
30 Correct 3 ms 680 KB Output is correct
31 Correct 2 ms 680 KB Output is correct
32 Correct 3 ms 680 KB Output is correct
33 Correct 3 ms 688 KB Output is correct
34 Correct 3 ms 688 KB Output is correct
35 Correct 2 ms 704 KB Output is correct
36 Correct 2 ms 704 KB Output is correct
37 Correct 2 ms 704 KB Output is correct
38 Correct 2 ms 704 KB Output is correct
39 Correct 3 ms 704 KB Output is correct
40 Correct 2 ms 704 KB Output is correct
41 Correct 3 ms 704 KB Output is correct
42 Correct 3 ms 704 KB Output is correct
43 Correct 2 ms 704 KB Output is correct
44 Correct 2 ms 704 KB Output is correct
45 Correct 4 ms 704 KB Output is correct
46 Correct 2 ms 704 KB Output is correct
47 Correct 3 ms 704 KB Output is correct
48 Correct 2 ms 704 KB Output is correct
49 Correct 3 ms 704 KB Output is correct
50 Correct 3 ms 704 KB Output is correct
51 Correct 2 ms 704 KB Output is correct
52 Correct 2 ms 732 KB Output is correct
53 Correct 3 ms 732 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 412 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 2 ms 468 KB Output is correct
6 Correct 2 ms 484 KB Output is correct
7 Correct 3 ms 612 KB Output is correct
8 Correct 2 ms 680 KB Output is correct
9 Correct 2 ms 680 KB Output is correct
10 Correct 2 ms 680 KB Output is correct
11 Correct 2 ms 680 KB Output is correct
12 Correct 2 ms 680 KB Output is correct
13 Correct 2 ms 680 KB Output is correct
14 Correct 2 ms 680 KB Output is correct
15 Correct 2 ms 680 KB Output is correct
16 Correct 2 ms 680 KB Output is correct
17 Correct 2 ms 680 KB Output is correct
18 Correct 2 ms 680 KB Output is correct
19 Correct 2 ms 680 KB Output is correct
20 Correct 2 ms 680 KB Output is correct
21 Correct 2 ms 680 KB Output is correct
22 Correct 2 ms 680 KB Output is correct
23 Correct 2 ms 680 KB Output is correct
24 Correct 3 ms 680 KB Output is correct
25 Correct 2 ms 680 KB Output is correct
26 Correct 3 ms 680 KB Output is correct
27 Correct 2 ms 680 KB Output is correct
28 Correct 3 ms 680 KB Output is correct
29 Correct 2 ms 680 KB Output is correct
30 Correct 3 ms 680 KB Output is correct
31 Correct 2 ms 680 KB Output is correct
32 Correct 3 ms 680 KB Output is correct
33 Correct 3 ms 688 KB Output is correct
34 Correct 3 ms 688 KB Output is correct
35 Correct 2 ms 704 KB Output is correct
36 Correct 2 ms 704 KB Output is correct
37 Correct 2 ms 704 KB Output is correct
38 Correct 2 ms 704 KB Output is correct
39 Correct 3 ms 704 KB Output is correct
40 Correct 2 ms 704 KB Output is correct
41 Correct 3 ms 704 KB Output is correct
42 Correct 3 ms 704 KB Output is correct
43 Correct 2 ms 704 KB Output is correct
44 Correct 2 ms 704 KB Output is correct
45 Correct 4 ms 704 KB Output is correct
46 Correct 2 ms 704 KB Output is correct
47 Correct 3 ms 704 KB Output is correct
48 Correct 2 ms 704 KB Output is correct
49 Correct 3 ms 704 KB Output is correct
50 Correct 3 ms 704 KB Output is correct
51 Correct 2 ms 704 KB Output is correct
52 Correct 2 ms 732 KB Output is correct
53 Correct 3 ms 732 KB Output is correct
54 Correct 3 ms 732 KB Output is correct
55 Correct 19 ms 24828 KB Output is correct
56 Correct 4 ms 24828 KB Output is correct
57 Correct 18 ms 24828 KB Output is correct
58 Correct 84 ms 28760 KB Output is correct
59 Correct 688 ms 174592 KB Output is correct
60 Correct 807 ms 177328 KB Output is correct
61 Correct 743 ms 177328 KB Output is correct
62 Correct 3 ms 177328 KB Output is correct
63 Correct 766 ms 177328 KB Output is correct
64 Execution timed out 2037 ms 263168 KB Time limit exceeded
65 Halted 0 ms 0 KB -