Submission #66898

# Submission time Handle Problem Language Result Execution time Memory
66898 2018-08-12T18:30:44 Z cdemirer Dango Maker (JOI18_dango_maker) C++11
33 / 100
2000 ms 263168 KB
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<vii> vvii;
typedef vector<vi> vvi;
typedef pair<double, double> dodo;
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define INF 1000000005

#define TYPE ii
typedef struct Node {
	TYPE k;
	int p;
	Node *l, *r;
	int sz;
	TYPE mn;
	Node(TYPE param) {
		k = param;
		p = rand();
		l = r = 0;
		sz = 1;
		mn = param;
	}
} Node;
typedef pair<Node*, Node*> NodepNodep;
void update(Node *x) {
	if (!x) return;
	x->sz = (x->l ? x->l->sz : 0) + 1 + (x->r ? x->r->sz : 0);
	x->mn = (x->l ? x->l->mn : x->k);
}
NodepNodep split(Node *r, TYPE k) {
	NodepNodep nn;
	if (!r) {
		nn.first = nn.second = nullptr;
	} else if (k <= r->k) {
		nn.second = r;
		NodepNodep res = split(r->l, k);
		nn.first = res.first;
		r->l = res.second;
		update(nn.first);
		update(nn.second);
	} else {
		nn.first = r;
		NodepNodep res = split(r->r, k);
		r->r = res.first;
		nn.second = res.second;
		update(nn.first);
		update(nn.second);
	}
	return nn;
}
NodepNodep splitAlt(Node *r, int ind) {
	NodepNodep nn;
	if (!r) {
		nn.first = nn.second = nullptr;
	} else if ((r->l ? r->l->sz : 0) >= ind) {
		nn.second = r;
		NodepNodep res = splitAlt(r->l, ind);
		nn.first = res.first;
		r->l = res.second;
		update(nn.first);
		update(nn.second);
	} else {
		nn.first = r;
		NodepNodep res = splitAlt(r->r, ind-1-(r->l ? r->l->sz : 0));
		r->r = res.first;
		nn.second = res.second;
		update(nn.first);
		update(nn.second);
	}
	return nn;
}
bool exists(Node *r, TYPE k) {
	if (!r) return false;
	else if (r->k == k) return true;
	else if (k < r->k) return exists(r->l, k);
	else return exists(r->r, k);
}
Node* insert(Node *r, Node *n) {
	Node *ret;
	if (!r) {
		ret = n;
		update(ret);
	} else if (n->p > r->p) {
		NodepNodep res = split(r, n->k);
		n->l = res.first;
		n->r = res.second;
		ret = n;
		update(ret);
	} else {
		if (n->k < r->k) {
			r->l = insert(r->l, n);
		} else {
			r->r = insert(r->r, n);
		}
		ret = r;
		update(ret);
	}
	return ret;
}
Node* merge(Node *l, Node *r) {
	Node *ret;
	if (!l) ret = r;
	else if (!r) ret = l;
	else {
		if (l->p > r->p) {
			Node *res = merge(l->r, r);
			l->r = res;
			ret = l;
		} else {
			Node *res = merge(l, r->l);
			r->l = res;
			ret = r;
		}
		update(ret);
	}
	return ret;
}
Node* erase(Node *r, TYPE k) {
	Node *ret;
	if (!r) ret = nullptr;
	else if (r->k == k) {
		ret = merge(r->l, r->r);
		update(ret);
	} else {
		if (k < r->k) {
			r->l = erase(r->l, k);
		} else {
			r->r = erase(r->r, k);
		}
		ret = r;
		update(ret);
	}
	return ret;
}
/*void traversePrint(Node *r) {
	if (!r) return;
	if (r->l) traversePrint(r->l);
	cerr << r->k << " (" << r->p << ")   ";
	if (r->r) traversePrint(r->r);
}*/
#undef TYPE


int N, M;

vvi edges;
int num_nodes = 0;
int createNode() {
	edges.pb(vi());
	return num_nodes++;
}
void connect(int a, int b) {
	edges[a].pb(b);
	edges[b].pb(a);
}

const int ARRSIZE = 3000*3000;
int parent[ARRSIZE];
bool vis[ARRSIZE] = {0};
int bfs(int x, bool b) {
	int ret = 0;
	queue<ii> Q;
	Q.push(mp(x, (int)b));
	while (!Q.empty()) {
		ii a = Q.front(); Q.pop();
		if (vis[a.first]) {
			continue;
		}
		vis[a.first] = true;
		ret += a.second;
		for (int i = 0; i < edges[a.first].size(); i++) {
			int y = edges[a.first][i];
			Q.push(mp(y, !a.second));
		}
	}
	return ret;
}
void clean(int x) {
	vis[x] = false;
	for (int i = 0; i < edges[x].size(); i++) {
		int y = edges[x][i];
		if (!vis[y]) continue;
		clean(y);
	}
}	

int mat[3000][3000];
int touch[3000][3000][2];
void func() {
	
	cin >> N >> M;
	for (int i = 0; i < N; i++) {
		string s; cin >> s;
		for (int j = 0; j < M; j++) {
			if (s[j] == 'R') mat[i][j] = 0;
			if (s[j] == 'G') mat[i][j] = 1;
			if (s[j] == 'W') mat[i][j] = 2;
		}
	}
	for (int i = 0; i < N; i++) for (int j = 0; j < M; j++) touch[i][j][0] = touch[i][j][1] = -1;
	for (int i = 0; i < N; i++) {
		for (int j = 0; j < M-2; j++) {
			if (mat[i][j]*9 + mat[i][j+1]*3 + mat[i][j+2]*1 == 5) {
				int x = createNode();
				/*if (touch[i][j].size() > 0) {
					for (int k = 0; k < touch[i][j].size(); k++) connect(x, touch[i][j][k]);
				}*/
				if (touch[i][j][0] != -1) touch[i][j][1] = x;
				else touch[i][j][0] = x;
				//touch[i][j].pb(x);
				/*if (touch[i][j+1].size() > 0) {
					for (int k = 0; k < touch[i][j+1].size(); k++) connect(x, touch[i][j+1][k]);
				}*/
				if (touch[i][j+1][0] != -1) touch[i][j+1][1] = x;
				else touch[i][j+1][0] = x;
				//touch[i][j+1].pb(x);
				/*if (touch[i][j+2].size() > 0) {
					for (int k = 0; k < touch[i][j+2].size(); k++) connect(x, touch[i][j+2][k]);
				}*/
				if (touch[i][j+2][0] != -1) touch[i][j+2][1] = x;
				else touch[i][j+2][0] = x;
				//touch[i][j+2].pb(x);
			}
		}
	}
	for (int i = 0; i < N-2; i++) {
		for (int j = 0; j < M; j++) {
			if (mat[i][j]*9 + mat[i+1][j]*3 + mat[i+2][j]*1 == 5) {
				int x = createNode();
				//if (touch[i][j].size() > 0) {
				//for (int k = 0; k < touch[i][j].size(); k++) connect(x, touch[i][j][k]);
				if (touch[i][j][0] != -1) connect(x, touch[i][j][0]);
				if (touch[i][j][1] != -1) connect(x, touch[i][j][1]);
				//}
				//touch[i][j].pb(x);
				//if (touch[i+1][j].size() > 0) {
				//for (int k = 0; k < touch[i+1][j].size(); k++) connect(x, touch[i+1][j][k]);
				if (touch[i+1][j][0] != -1) connect(x, touch[i+1][j][0]);
				if (touch[i+1][j][1] != -1) connect(x, touch[i+1][j][1]);
				//}
				//touch[i+1][j].pb(x);
				//if (touch[i+2][j].size() > 0) {
				//for (int k = 0; k < touch[i+2][j].size(); k++) connect(x, touch[i+2][j][k]);
				if (touch[i+2][j][0] != -1) connect(x, touch[i+2][j][0]);
				if (touch[i+2][j][1] != -1) connect(x, touch[i+2][j][1]);
				//}
				//touch[i+2][j].pb(x);
			}
		}
	}
}

int count_component(int x) {
	vis[x] = true;
	int ret = 1;
	for (int i = 0; i < edges[x].size(); i++) {
		int y = edges[x][i];
		if (vis[y]) continue;
		ret += count_component(y);
	}
	return ret;
}

int es[ARRSIZE] = {0};
int main(int argc, char **argv) {
	ios_base::sync_with_stdio(0);
	cin.tie(0);
	
	func();
	
	//if (N > 2999 && M > 2999) exit(-1);
	
	/*int sum = 0;
	set<ii> S;
	for (int i = 0; i < num_nodes; i++) es[i] = edges[i].size();
	for (int i = 0; i < num_nodes; i++) S.insert(mp(es[i], i));
	while (!S.empty()) {
		int x = (*S.begin()).second;
		S.erase(S.begin());
		for (int i = 0; i < edges[x].size(); i++) {
			int y = edges[x][i];
			auto it = S.find(mp(es[y], y));
			if (it != S.end()) {
				S.erase(it);
				for (int j = 0; j < edges[y].size(); j++) {
					int y2 = edges[y][j];
					auto it2 = S.find(mp(es[y2], y2));
					if (it2 != S.end()) {
						S.erase(it2);
						es[y2]--;
						S.insert(mp(es[y2], y2));
					}
				}
			}
		}
		sum++;
	}*/
	int sum = 0;
	srand(time(0));
	Node *root = nullptr;
	for (int i = 0; i < num_nodes; i++) es[i] = edges[i].size();
	for (int i = 0; i < num_nodes; i++) {
		Node *n = new Node(mp(es[i], i));
		root = insert(root, n);
	}
	while (root != nullptr) {
		int x = root->mn.second;
		root = erase(root, mp(es[x], x));
		for (int i = 0; i < edges[x].size(); i++) {
			int y = edges[x][i];
			if (exists(root, mp(es[y], y))) {
				root = erase(root, mp(es[y], y));
				for (int j = 0; j < edges[y].size(); j++) {
					int y2 = edges[y][j];
					if (exists(root, mp(es[y2], y2))) {
						root = erase(root, mp(es[y2], y2));
						es[y2]--;
						Node *n = new Node(mp(es[y2], y2));
						root = insert(root, n);
					}
				}
			}
		}
		sum++;
	}
	/*for (int i = 0; i < num_nodes; i++) {
		if (vis[i]) continue;
		int a = bfs(i, true);
		clean(i);
		int b = bfs(i, false);
		assert(abs(a-b) <= 1);
		sum += max(a, b);
	}*/
	cout << sum << endl;
	
	return 0;
}

Compilation message

dango_maker.cpp: In function 'int bfs(int, bool)':
dango_maker.cpp:176:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for (int i = 0; i < edges[a.first].size(); i++) {
                   ~~^~~~~~~~~~~~~~~~~~~~~~~
dango_maker.cpp: In function 'void clean(int)':
dango_maker.cpp:185:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  for (int i = 0; i < edges[x].size(); i++) {
                  ~~^~~~~~~~~~~~~~~~~
dango_maker.cpp: In function 'int count_component(int)':
dango_maker.cpp:261:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  for (int i = 0; i < edges[x].size(); i++) {
                  ~~^~~~~~~~~~~~~~~~~
dango_maker.cpp: In function 'int main(int, char**)':
dango_maker.cpp:314:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for (int i = 0; i < edges[x].size(); i++) {
                   ~~^~~~~~~~~~~~~~~~~
dango_maker.cpp:318:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int j = 0; j < edges[y].size(); j++) {
                     ~~^~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 3 ms 376 KB Output is correct
3 Correct 3 ms 432 KB Output is correct
4 Correct 3 ms 520 KB Output is correct
5 Correct 2 ms 520 KB Output is correct
6 Correct 2 ms 544 KB Output is correct
7 Correct 2 ms 544 KB Output is correct
8 Correct 2 ms 560 KB Output is correct
9 Correct 2 ms 560 KB Output is correct
10 Correct 2 ms 620 KB Output is correct
11 Correct 2 ms 620 KB Output is correct
12 Correct 2 ms 620 KB Output is correct
13 Correct 2 ms 620 KB Output is correct
14 Correct 3 ms 636 KB Output is correct
15 Correct 2 ms 636 KB Output is correct
16 Correct 2 ms 636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 3 ms 376 KB Output is correct
3 Correct 3 ms 432 KB Output is correct
4 Correct 3 ms 520 KB Output is correct
5 Correct 2 ms 520 KB Output is correct
6 Correct 2 ms 544 KB Output is correct
7 Correct 2 ms 544 KB Output is correct
8 Correct 2 ms 560 KB Output is correct
9 Correct 2 ms 560 KB Output is correct
10 Correct 2 ms 620 KB Output is correct
11 Correct 2 ms 620 KB Output is correct
12 Correct 2 ms 620 KB Output is correct
13 Correct 2 ms 620 KB Output is correct
14 Correct 3 ms 636 KB Output is correct
15 Correct 2 ms 636 KB Output is correct
16 Correct 2 ms 636 KB Output is correct
17 Correct 2 ms 636 KB Output is correct
18 Correct 2 ms 636 KB Output is correct
19 Correct 2 ms 636 KB Output is correct
20 Correct 3 ms 636 KB Output is correct
21 Correct 3 ms 636 KB Output is correct
22 Correct 2 ms 636 KB Output is correct
23 Correct 2 ms 636 KB Output is correct
24 Correct 2 ms 636 KB Output is correct
25 Correct 2 ms 636 KB Output is correct
26 Correct 3 ms 636 KB Output is correct
27 Correct 3 ms 640 KB Output is correct
28 Correct 2 ms 640 KB Output is correct
29 Correct 2 ms 640 KB Output is correct
30 Correct 2 ms 640 KB Output is correct
31 Correct 3 ms 640 KB Output is correct
32 Correct 3 ms 640 KB Output is correct
33 Correct 2 ms 660 KB Output is correct
34 Correct 3 ms 660 KB Output is correct
35 Correct 3 ms 684 KB Output is correct
36 Correct 3 ms 704 KB Output is correct
37 Correct 3 ms 728 KB Output is correct
38 Correct 2 ms 744 KB Output is correct
39 Correct 2 ms 744 KB Output is correct
40 Correct 4 ms 744 KB Output is correct
41 Correct 3 ms 744 KB Output is correct
42 Correct 3 ms 744 KB Output is correct
43 Correct 2 ms 744 KB Output is correct
44 Correct 2 ms 744 KB Output is correct
45 Correct 3 ms 744 KB Output is correct
46 Correct 2 ms 744 KB Output is correct
47 Correct 2 ms 744 KB Output is correct
48 Correct 2 ms 744 KB Output is correct
49 Correct 3 ms 744 KB Output is correct
50 Correct 3 ms 744 KB Output is correct
51 Correct 3 ms 744 KB Output is correct
52 Correct 3 ms 744 KB Output is correct
53 Correct 2 ms 744 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 3 ms 376 KB Output is correct
3 Correct 3 ms 432 KB Output is correct
4 Correct 3 ms 520 KB Output is correct
5 Correct 2 ms 520 KB Output is correct
6 Correct 2 ms 544 KB Output is correct
7 Correct 2 ms 544 KB Output is correct
8 Correct 2 ms 560 KB Output is correct
9 Correct 2 ms 560 KB Output is correct
10 Correct 2 ms 620 KB Output is correct
11 Correct 2 ms 620 KB Output is correct
12 Correct 2 ms 620 KB Output is correct
13 Correct 2 ms 620 KB Output is correct
14 Correct 3 ms 636 KB Output is correct
15 Correct 2 ms 636 KB Output is correct
16 Correct 2 ms 636 KB Output is correct
17 Correct 2 ms 636 KB Output is correct
18 Correct 2 ms 636 KB Output is correct
19 Correct 2 ms 636 KB Output is correct
20 Correct 3 ms 636 KB Output is correct
21 Correct 3 ms 636 KB Output is correct
22 Correct 2 ms 636 KB Output is correct
23 Correct 2 ms 636 KB Output is correct
24 Correct 2 ms 636 KB Output is correct
25 Correct 2 ms 636 KB Output is correct
26 Correct 3 ms 636 KB Output is correct
27 Correct 3 ms 640 KB Output is correct
28 Correct 2 ms 640 KB Output is correct
29 Correct 2 ms 640 KB Output is correct
30 Correct 2 ms 640 KB Output is correct
31 Correct 3 ms 640 KB Output is correct
32 Correct 3 ms 640 KB Output is correct
33 Correct 2 ms 660 KB Output is correct
34 Correct 3 ms 660 KB Output is correct
35 Correct 3 ms 684 KB Output is correct
36 Correct 3 ms 704 KB Output is correct
37 Correct 3 ms 728 KB Output is correct
38 Correct 2 ms 744 KB Output is correct
39 Correct 2 ms 744 KB Output is correct
40 Correct 4 ms 744 KB Output is correct
41 Correct 3 ms 744 KB Output is correct
42 Correct 3 ms 744 KB Output is correct
43 Correct 2 ms 744 KB Output is correct
44 Correct 2 ms 744 KB Output is correct
45 Correct 3 ms 744 KB Output is correct
46 Correct 2 ms 744 KB Output is correct
47 Correct 2 ms 744 KB Output is correct
48 Correct 2 ms 744 KB Output is correct
49 Correct 3 ms 744 KB Output is correct
50 Correct 3 ms 744 KB Output is correct
51 Correct 3 ms 744 KB Output is correct
52 Correct 3 ms 744 KB Output is correct
53 Correct 2 ms 744 KB Output is correct
54 Correct 2 ms 744 KB Output is correct
55 Correct 22 ms 24828 KB Output is correct
56 Correct 4 ms 24828 KB Output is correct
57 Correct 16 ms 24828 KB Output is correct
58 Correct 91 ms 28712 KB Output is correct
59 Correct 753 ms 174616 KB Output is correct
60 Correct 770 ms 177328 KB Output is correct
61 Correct 691 ms 177328 KB Output is correct
62 Correct 2 ms 177328 KB Output is correct
63 Correct 665 ms 177328 KB Output is correct
64 Execution timed out 2047 ms 263168 KB Time limit exceeded
65 Halted 0 ms 0 KB -