| # | Time | Username | Problem | Language | Result | Execution time | Memory | 
|---|---|---|---|---|---|---|---|
| 660304 | riyuna | Lonely mdic (kriii1_L) | Pypy 3 | 342 ms | 28520 KiB | 
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
from sys import stdin
from math import pi, acos, atan
from copy import deepcopy
from time import time
input = stdin.readline
err = 1e-5
class Point:
    __slots__ = ('x', 'y')
    def __init__(self, x, y):
        self.x = x
        self.y = y
    
    def __str__(self):
        return f"({self.x}, {self.y})"
    
    def __add__(self, other):
        return Point(self.x+other.x, self.y+other.y)
    
    def __sub__(self, other):
        return Point(self.x-other.x, self.y-other.y) 
    
    def __pow__(self, other):
        return self.x * other.x + self.y * other.y
    
    def __abs__(self):
        return self ** self
    
    def dist(self, other):
        res = self-other
        return abs(res)**0.5
class Circle:
    __slots__ = ('ctr', 'rad', 'active', 'on', 'deactive_stk')
    def __init__(self, ctr: Point, rad):
        self.ctr = ctr
        self.rad = rad
        self.active = [(0, 2 * pi)]
        self.deactive_stk = []
        self.on = True
    
    def deactivate(self, st, ed):
        if st > ed:
            self.deactivate(st, 2 * pi)
            self.deactivate(0, ed)
            return
        
        self.deactive_stk.append(st)
        self.deactive_stk.append(-ed)
    
    def calculate_active(self):
        self.active = []
        self.deactive_stk.sort(key=lambda x: abs(x))
        bef = 0
        flag = 0
        for v in self.deactive_stk:
            if v < 0:
                flag -= 1
                if flag == 0:
                    bef = -v
            else:
                if flag == 0:
                    if v-bef > err:
                        self.active.append((bef, v))
                flag += 1
        
        self.deactive_stk = []
def adjust_angle(angle):
    while angle < 0:
        angle += 2 * pi
    while angle > 2 * pi:
        angle -= 2 * pi
    return angle
def circle_intersect(c1: Circle, c2: Circle):
    ctr_dist = c1.ctr.dist(c2.ctr)
    
    if ctr_dist > c1.rad + c2.rad:
        return
    
    if c1.rad + ctr_dist <= c2.rad:
        c1.active = []
        return
    
    if c2.rad + ctr_dist <= c1.rad:
        c2.active = []
        return
    
    angle1 = acos((-c2.rad**2 + c1.rad**2 + ctr_dist**2)/(2 * c1.rad * ctr_dist))
    angle2 = acos((-c1.rad**2 + c2.rad**2 + ctr_dist**2)/(2 * c2.rad * ctr_dist))
    
    dvec = c2.ctr - c1.ctr
    angle = atan(dvec.y / dvec.x) if dvec.x != 0 else (pi / 2 if dvec.y > 0 else 3 * pi / 2)
    if dvec.x < 0:
        angle += pi
    
    angle1_st = adjust_angle(angle - angle1)
    angle1_ed = adjust_angle(angle + angle1)
    
    angle2_st = adjust_angle(pi + angle - angle2)
    angle2_ed = adjust_angle(pi + angle + angle2)
    
    c1.deactivate(angle1_st, angle1_ed)
    c2.deactivate(angle2_st, angle2_ed)
def find_composition(circles):
    for i in range(len(circles)):
        if not circles[i].on:
            continue
        for j in range(i+1, len(circles)):
            circle_intersect(circles[i], circles[j])
    
    for circle in circles:
        circle.calculate_active()
def check_circle_in_circle(circles):
    real = []
    for i in range(len(circles)):
        c1 = circles[i]
        is_real = True
        for j in range(len(circles)):
            if i == j:
                continue
            c2 = circles[j]
            ctr_dist = c1.ctr.dist(c2.ctr)
            if abs(c1.rad + ctr_dist - c2.rad) < err:
                is_real = False
                break
        
        if is_real:
            real.append(c1)
    
    return real
def solve(n, circles):
    circles = check_circle_in_circle(circles)
    cnt = n - len(circles)
    n = len(circles)
    
    total = deepcopy(circles)
    find_composition(total)
    
    for i in range(n):
        if total[i].active:
            continue
        
        circles[i].on = False
        v = time()
        find_composition(circles)
        print(time() - v)
        nonactive = True
        
        for j in range(n):
            if j == i:
                continue
            if total[j].active != circles[j].active:
                nonactive = False
                break
        
        if nonactive:
            cnt += 1
        
        circles[i].on = True
    
    return cnt
def main():
    n = int(input())
    circles = []
    for _ in range(n):
        x, y, r = map(int, input().split())
        circles.append(Circle(Point(x, y), r))
    print(solve(n, circles))
main()
| # | Verdict | Execution time | Memory | Grader output | 
|---|---|---|---|---|
| Fetching results... | ||||
