Submission #651758

# Submission time Handle Problem Language Result Execution time Memory
651758 2022-10-20T01:37:31 Z ghostwriter Tropical Garden (IOI11_garden) C++14
69 / 100
5000 ms 16916 KB
#pragma GCC optimize ("Ofast")
#pragma GCC target ("avx2")
#include "garden.h"
#include "gardenlib.h"
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.h>
#include "grader.cpp"
#else
#define debug(...)
#endif
#define ft front
#define bk back
#define st first
#define nd second
#define ins insert
#define ers erase
#define pb push_back
#define pf push_front
#define _pb pop_back
#define _pf pop_front
#define lb lower_bound
#define ub upper_bound
#define mtp make_tuple
#define bg begin
#define ed end
#define all(x) x.bg(), x.ed()
#define sz(x) (int)x.size()
typedef long long ll; typedef unsigned long long ull;
typedef double db; typedef long double ldb;
typedef pair<int, int> pi; typedef pair<ll, ll> pll;
typedef vector<int> vi; typedef vector<ll> vll; typedef vector<pi> vpi; typedef vector<pll> vpll;
typedef string str;
template<typename T> T gcd(T a, T b) { return (b == 0? a : gcd(b, a % b)); }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
#define FOR(i, l, r) for (int i = l; i <= r; ++i)
#define FOS(i, r, l) for (int i = r; i >= l; --i)
#define FRN(i, n) for (int i = 0; i < n; ++i)
#define FSN(i, n) for (int i = n - 1; i >= 0; --i)
#define EACH(i, x) for (auto &i : x)
#define WHILE while
#define file "TEST"
mt19937 rd(chrono::steady_clock::now().time_since_epoch().count());
ll rand(ll l, ll r) { return uniform_int_distribution<ll>(l, r)(rd); }
/*
----------------------------------------------------------------
    END OF TEMPLATE
----------------------------------------------------------------
    Tran The Bao - ghostwriter
    Training for VOI23 gold medal
----------------------------------------------------------------
    GOAT
----------------------------------------------------------------
*/
const int MAXN = 15e4;
int ind[MAXN][2], c[MAXN][2], c1[MAXN][2], s[MAXN][2], d[MAXN][2];
vi adj[MAXN];
vpi e;
pi nxt(pi x) {
    int u = x.st;
    bool stt = x.nd;
    int id = (!stt? 0 : sz(adj[u]) == 1? 0 : 1);
    int nxtv = e[adj[u][id]].st == u? e[adj[u][id]].nd : e[adj[u][id]].st;
    return {nxtv, adj[u][id] == adj[nxtv][0]? 1 : 0};
}
int cal(int &N, int &P, int &x) {
    memset(c, 0, sizeof c);
    int ans = 0;
    FRN(i, N)
    FRN(j, 2) {
        if (ind[i][j]) continue;
        int x1 = x;
        if (x1 > d[i][j]) {
            x1 -= d[i][j];
            x1 %= s[i][j];
            x1 += d[i][j];
        }
        pi cur = {i, j};
        FOR(z, 1, x1) cur = nxt(cur);
        if (cur.st == P && !j) ++ans;
        c[i][j] = 1;
        pi cur1 = nxt({i, j});
        WHILE(!c[cur1.st][cur1.nd]) {
            cur = nxt(cur);
            if (cur.st == P && !cur1.nd) ++ans;
            c[cur1.st][cur1.nd] = 1;
            cur1 = nxt(cur1);
        }
    }
    FRN(i, N)
    FRN(j, 2) {
        if (c[i][j]) continue;
        int x1 = x % s[i][j];
        pi cur = {i, j};
        FOR(z, 1, x1) cur = nxt(cur);
        if (cur.st == P && !j) ++ans;
        c[i][j] = 1;
        pi cur1 = nxt({i, j});
        WHILE(!c[cur1.st][cur1.nd]) {
            cur = nxt(cur);
            if (cur.st == P && !cur1.nd) ++ans;
            c[cur1.st][cur1.nd] = 1;
            cur1 = nxt(cur1);
        }   
    }
    return ans;
}
void count_routes(int N, int M, int P, int R[][2], int Q, int G[]) {
    FRN(i, M) {
        int u = R[i][0], v = R[i][1];
        e.pb({u, v});
        adj[u].pb(i);
        adj[v].pb(i);
    }
    FRN(i, N)
    FRN(j, 2) {
        pi tmp1 = nxt({i, j});
        ind[tmp1.st][tmp1.nd] = 1;
        if (c1[i][j]) continue;
        vpi ver;
        pi cur = {i, j};
        WHILE(1) {
            if (!c[cur.st][cur.nd]) ver.pb(cur);
            ++c[cur.st][cur.nd];
            cur = nxt(cur);
            if (c1[cur.st][cur.nd] || c[cur.st][cur.nd] == 2) break;
        }
        reverse(all(ver));
        if (c[ver.ft().st][ver.ft().nd] == 2) {
            int cnt = 0, h = 0;
            EACH(z, ver) if (c[z.st][z.nd] == 2) ++cnt;
            EACH(z, ver) {
                if (c[z.st][z.nd] == 1) ++h;
                s[z.st][z.nd] = cnt;
                d[z.st][z.nd] = h;
            }
        }
        else {
            pi tmp = nxt(ver.ft());
            int cnt = s[tmp.st][tmp.nd], h = d[tmp.st][tmp.nd];
            EACH(z, ver) {
                ++h;
                s[z.st][z.nd] = cnt;
                d[z.st][z.nd] = h;
            }
        }
        EACH(z, ver) c1[z.st][z.nd] = 1;
    }
    FRN(q, Q) answer(cal(N, P, G[q]));
}
/*
5 5 2
1 0
1 2
3 2
1 3
4 2
2
3 1
1 2

0 0 1 1
0 1 1 1
1 0 0 1
1 1 2 1
2 0 1 0
2 1 3 1
3 0 2 0
3 1 1 0
4 0 2 0
4 1 2 0
----------------------------------------------------------------
From Benq:
    stuff you should look for
        * int overflow, array bounds
        * special cases (n=1?)
        * do smth instead of nothing and stay organized
        * WRITE STUFF DOWN
        * DON'T GET STUCK ON ONE APPROACH
----------------------------------------------------------------
*/


# Verdict Execution time Memory Grader output
1 Correct 3 ms 5076 KB Output is correct
2 Correct 3 ms 5076 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 3 ms 4948 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 3 ms 5076 KB Output is correct
9 Correct 5 ms 5204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5076 KB Output is correct
2 Correct 3 ms 5076 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 3 ms 4948 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 3 ms 5076 KB Output is correct
9 Correct 5 ms 5204 KB Output is correct
10 Correct 3 ms 4948 KB Output is correct
11 Correct 410 ms 6864 KB Output is correct
12 Correct 745 ms 8396 KB Output is correct
13 Correct 47 ms 11900 KB Output is correct
14 Correct 231 ms 15788 KB Output is correct
15 Correct 243 ms 16036 KB Output is correct
16 Correct 3009 ms 13392 KB Output is correct
17 Correct 126 ms 12684 KB Output is correct
18 Correct 130 ms 8328 KB Output is correct
19 Correct 207 ms 15916 KB Output is correct
20 Correct 250 ms 16056 KB Output is correct
21 Correct 1020 ms 13340 KB Output is correct
22 Correct 136 ms 12652 KB Output is correct
23 Correct 1273 ms 16916 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5076 KB Output is correct
2 Correct 3 ms 5076 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 3 ms 4948 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 3 ms 5076 KB Output is correct
9 Correct 5 ms 5204 KB Output is correct
10 Correct 3 ms 4948 KB Output is correct
11 Correct 410 ms 6864 KB Output is correct
12 Correct 745 ms 8396 KB Output is correct
13 Correct 47 ms 11900 KB Output is correct
14 Correct 231 ms 15788 KB Output is correct
15 Correct 243 ms 16036 KB Output is correct
16 Correct 3009 ms 13392 KB Output is correct
17 Correct 126 ms 12684 KB Output is correct
18 Correct 130 ms 8328 KB Output is correct
19 Correct 207 ms 15916 KB Output is correct
20 Correct 250 ms 16056 KB Output is correct
21 Correct 1020 ms 13340 KB Output is correct
22 Correct 136 ms 12652 KB Output is correct
23 Correct 1273 ms 16916 KB Output is correct
24 Correct 76 ms 4948 KB Output is correct
25 Execution timed out 5091 ms 6852 KB Time limit exceeded
26 Halted 0 ms 0 KB -