/*
Let's sort the trapezoid by its top-left coordinate, in increasing order.
Define:
dp[i] = The size of max independent set of trapezoids that can be formed using the i-th trapezoid upto the last
trapezoid, and the i-th trapezoid is included in the set.
dp[i] = max(1 + dp[j]), where the j-th (j > i) trapezoid doesn't intersect with the i-th trapezoid.
Naive implementation will take O(N^2) time. The bottleneck of the solution is in finding the trapezoid
that doesn't intersect with the current trapezoid.
To speed up the solution, we need a data structure that can support the following queries:
* Get the value of dp[j] (and number of ways to achieve it) for all trapezoids whose lower-left corner is larger than
a certain value.
* Insert the value of dp[j] for a trapezoid whose lower-left corner is a certain value.
We have to be careful when dealing with the above data structure. We only insert trapezoids whose top-left corner is larger
than the current trapezoid's top-right corner. This can be ensured by processing the top points of the trapezoids from the
right most one. Whenever we encounter a top-right corner, we query, and whenever we encounter a top-left corner, we insert.
*/
#include<bits/stdc++.h>
using namespace std;
#define MAXV 400001
#define MAXN 100000
#define MOD 30013
int n, t[MAXN + 3][4], topPointOwner[MAXV + 3], dp[MAXN + 3], numWays[MAXN + 3];
bool isTopLeftPoint[MAXV + 3];
vector<int> uniqueCoordinates;
pair<int, int> tree[4 * MAXV + 3];
pair<int, int> combine(pair<int, int> a, pair<int, int> b) {
if (a.first != b.first) {
return a.first < b.first ? b : a;
} else {
return make_pair(a.first, (a.second + b.second)%MOD);
}
}
void doUpdate(int node, int l, int r, int idx, int sz, int ways) {
if (r < idx || l > idx) {
return;
}
if (l == r) {
tree[node] = {sz, ways};
return;
}
int m = (l + r)/2;
doUpdate(2 * node, l, m, idx, sz, ways);
doUpdate(2 * node + 1, m + 1, r, idx, sz, ways);
tree[node] = combine(tree[2 * node], tree[2 * node + 1]);
}
void update(int idx, int sz, int ways) {
doUpdate(1, 1, MAXV, idx, sz, ways);
}
pair<int, int> doQuery(int node, int l, int r, int ql, int qr) {
if (r < ql || l > qr) {
return {0, 0};
}
if (l >= ql && r <= qr) {
return tree[node];
}
int m = (l + r)/2;
return combine(doQuery(2 * node, l, m, ql, qr), doQuery(2 * node + 1, m + 1, r, ql, qr));
}
pair<int, int> query(int idx) {
return doQuery(1, 1, MAXV, idx, MAXV);
}
int main() {
cin >> n;
for (int i = 1; i <= n; i++) {
for (int j = 0; j < 4; j++) {
cin >> t[i][j];
uniqueCoordinates.push_back(t[i][j]);
}
}
sort(uniqueCoordinates.begin(), uniqueCoordinates.end());
uniqueCoordinates.erase(unique(uniqueCoordinates.begin(), uniqueCoordinates.end()), uniqueCoordinates.end());
for (int i = 1; i <= n; i++) {
for (int j = 0; j < 4; j++) {
t[i][j] = (lower_bound(uniqueCoordinates.begin(), uniqueCoordinates.end(), t[i][j]) - uniqueCoordinates.begin()) + 1;
}
}
memset(topPointOwner, -1, sizeof(topPointOwner));
memset(isTopLeftPoint, false, sizeof(isTopLeftPoint));
for (int i = 1; i <= n; i++) {
topPointOwner[t[i][0]] = topPointOwner[t[i][1]] = i;
isTopLeftPoint[t[i][0]] = true;
}
for (int c = 1; c <= 4 * MAXV; c++) {
tree[c] = {0, 0};
}
update(MAXV, 0, 1);
for (int c = MAXV - 1; c >= 1; c--) {
if (topPointOwner[c] == -1) {
continue;
}
int owner = topPointOwner[c];
if (isTopLeftPoint[c]) {
update(t[owner][2], dp[owner], numWays[owner]);
} else {
auto queryResult = query(t[owner][3] + 1);
dp[owner] = 1 + queryResult.first;
numWays[owner] = queryResult.second;
}
}
pair<int, int> ans = {0, 0};
for (int i = 1; i <= n; i++) {
ans = combine(ans, {dp[i], numWays[i]});
}
cout << ans.first << " " << ans.second << endl;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
14804 KB |
Output is correct |
2 |
Correct |
8 ms |
14736 KB |
Output is correct |
3 |
Correct |
8 ms |
14804 KB |
Output is correct |
4 |
Correct |
10 ms |
14804 KB |
Output is correct |
5 |
Correct |
12 ms |
14908 KB |
Output is correct |
6 |
Correct |
16 ms |
14932 KB |
Output is correct |
7 |
Correct |
16 ms |
14960 KB |
Output is correct |
8 |
Correct |
17 ms |
15060 KB |
Output is correct |
9 |
Correct |
31 ms |
15424 KB |
Output is correct |
10 |
Correct |
52 ms |
15644 KB |
Output is correct |
11 |
Correct |
74 ms |
15852 KB |
Output is correct |
12 |
Correct |
135 ms |
16916 KB |
Output is correct |
13 |
Correct |
155 ms |
17216 KB |
Output is correct |
14 |
Correct |
190 ms |
17592 KB |
Output is correct |
15 |
Correct |
203 ms |
17856 KB |
Output is correct |
16 |
Correct |
213 ms |
18112 KB |
Output is correct |
17 |
Correct |
220 ms |
18180 KB |
Output is correct |
18 |
Correct |
223 ms |
18428 KB |
Output is correct |
19 |
Correct |
242 ms |
18616 KB |
Output is correct |
20 |
Correct |
273 ms |
18756 KB |
Output is correct |