Submission #651564

#TimeUsernameProblemLanguageResultExecution timeMemory
651564alvinpitertrapezoid (balkan11_trapezoid)C++17
100 / 100
289 ms21536 KiB
/* Let's sort the trapezoid by its top-left coordinate, in increasing order. Define: dp[i] = The size of max independent set of trapezoids that can be formed using the i-th trapezoid upto the last trapezoid, and the i-th trapezoid is included in the set. dp[i] = max(1 + dp[j]), where the j-th (j > i) trapezoid doesn't intersect with the i-th trapezoid. Naive implementation will take O(N^2) time. The bottleneck of the solution is in finding the trapezoid that doesn't intersect with the current trapezoid. To speed up the solution, we need a data structure that can support the following queries: * Get the value of dp[j] (and number of ways to achieve this) for all trapezoids whose lower-left corner is larger than a certain value. * Insert the value of dp[j] for a trapezoid whose lower-left corner is a certain value. We have to be careful when dealing with the above data structure. We only insert trapezoids whose top-left corner is larger than the current trapezoid's top-right corner. This can be ensured by processing the top points of the trapezoids from the right most one. Whenever we encounter a top-right corner, we query, and whenever we encounter a top-left corner, we insert. */ #include<bits/stdc++.h> using namespace std; #define MAXV 400001 #define MAXN 100000 #define MOD 30013 int n, t[MAXN + 3][4], topPointOwner[MAXV + 3], dp[MAXN + 3], numWays[MAXN + 3]; bool isTopLeftPoint[MAXV + 3]; vector<int> uniqueCoordinates; pair<int, int> tree[4 * MAXV + 3]; pair<int, int> combine(pair<int, int> a, pair<int, int> b) { if (a.first != b.first) { return a.first < b.first ? b : a; } else { return make_pair(a.first, (a.second + b.second)%MOD); } } void doUpdate(int node, int l, int r, int idx, int sz, int ways) { if (r < idx || l > idx) { return; } if (l == r) { tree[node] = {sz, ways}; return; } int m = (l + r)/2; doUpdate(2 * node, l, m, idx, sz, ways); doUpdate(2 * node + 1, m + 1, r, idx, sz, ways); tree[node] = combine(tree[2 * node], tree[2 * node + 1]); } void update(int idx, int sz, int ways) { doUpdate(1, 1, MAXV, idx, sz, ways); } pair<int, int> doQuery(int node, int l, int r, int ql, int qr) { if (r < ql || l > qr) { return {0, 0}; } if (l >= ql && r <= qr) { return tree[node]; } int m = (l + r)/2; return combine(doQuery(2 * node, l, m, ql, qr), doQuery(2 * node + 1, m + 1, r, ql, qr)); } pair<int, int> query(int idx) { return doQuery(1, 1, MAXV, idx, MAXV); } int main() { cin >> n; for (int i = 1; i <= n; i++) { for (int j = 0; j < 4; j++) { cin >> t[i][j]; uniqueCoordinates.push_back(t[i][j]); } } sort(uniqueCoordinates.begin(), uniqueCoordinates.end()); uniqueCoordinates.erase(unique(uniqueCoordinates.begin(), uniqueCoordinates.end()), uniqueCoordinates.end()); for (int i = 1; i <= n; i++) { for (int j = 0; j < 4; j++) { t[i][j] = (lower_bound(uniqueCoordinates.begin(), uniqueCoordinates.end(), t[i][j]) - uniqueCoordinates.begin()) + 1; } } memset(topPointOwner, -1, sizeof(topPointOwner)); memset(isTopLeftPoint, false, sizeof(isTopLeftPoint)); for (int i = 1; i <= n; i++) { topPointOwner[t[i][0]] = topPointOwner[t[i][1]] = i; isTopLeftPoint[t[i][0]] = true; } for (int c = 1; c <= 4 * MAXV; c++) { tree[c] = {0, 0}; } update(MAXV, 0, 1); for (int c = MAXV - 1; c >= 1; c--) { if (topPointOwner[c] == -1) { continue; } int owner = topPointOwner[c]; if (isTopLeftPoint[c]) { update(t[owner][2], dp[owner], numWays[owner]); } else { auto queryResult = query(t[owner][3] + 1); dp[owner] = 1 + queryResult.first; numWays[owner] = queryResult.second; } } // cout << "\ndp, numWays:\n"; // for (int i = 1; i <= n; i++) { // cout << i << ": " << dp[i] << " " << numWays[i] << endl; // } pair<int, int> ans = {0, 0}; for (int i = 1; i <= n; i++) { ans = combine(ans, {dp[i], numWays[i]}); } cout << ans.first << " " << ans.second << endl; }
#Verdict Execution timeMemoryGrader output
Fetching results...