Submission #649718

# Submission time Handle Problem Language Result Execution time Memory
649718 2022-10-11T09:14:27 Z inksamurai Planinarenje (COCI18_planinarenje) C++17
160 / 160
965 ms 2540 KB
#include <bits/stdc++.h>
using namespace std;
// cut here
#ifndef ATCODER_MAXFLOW_HPP
#define ATCODER_MAXFLOW_HPP 1
namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

template <class Cap> struct mf_graph {
  public:
    mf_graph() : _n(0) {}
    explicit mf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap});
        g[to].push_back(_edge{from, from_id, 0});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result;
        for (int i = 0; i < m; i++) {
            result.push_back(get_edge(i));
        }
        return result;
    }
    void change_edge(int i, Cap new_cap, Cap new_flow) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        assert(0 <= new_flow && new_flow <= new_cap);
        auto& _e = g[pos[i].first][pos[i].second];
        auto& _re = g[_e.to][_e.rev];
        _e.cap = new_cap - new_flow;
        _re.cap = new_flow;
    }

    Cap flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    Cap flow(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        std::vector<int> level(_n), iter(_n);
        internal::simple_queue<int> que;

        auto bfs = [&]() {
            std::fill(level.begin(), level.end(), -1);
            level[s] = 0;
            que.clear();
            que.push(s);
            while (!que.empty()) {
                int v = que.front();
                que.pop();
                // cout<<v<<"\n";
                for (auto e : g[v]) {
                	// cout<<e.cap<<" ";
                    if (e.cap == 0 || level[e.to] >= 0) continue;
                    level[e.to] = level[v] + 1;
                    if (e.to == t) return;
                    que.push(e.to);
                }
            }
        };
        auto dfs = [&](auto self, int v, Cap up) {
            if (v == s) return up;
            Cap res = 0;
            int level_v = level[v];
            for (int& i = iter[v]; i < int(g[v].size()); i++) {
                _edge& e = g[v][i];
                if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                Cap d =
                    self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                if (d <= 0) continue;
                g[v][i].cap += d;
                g[e.to][e.rev].cap -= d;
                res += d;
                if (res == up) return res;
            }
            level[v] = _n;
            return res;
        };
        // std::cout<<"\n";
        Cap flow = 0;
        while (flow < flow_limit) {
            bfs();
            // cout<<level[t]<<"\n";
            if (level[t] == -1) break;
            std::fill(iter.begin(), iter.end(), 0);
            Cap f = dfs(dfs, t, flow_limit - flow);
            if (!f) break;
            flow += f;
        }
        return flow;
    }

    std::vector<bool> min_cut(int s) {
        std::vector<bool> visited(_n);
        internal::simple_queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int p = que.front();
            que.pop();
            visited[p] = true;
            for (auto e : g[p]) {
                if (e.cap && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }

  public:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder

#endif  // ATCODER_MAXFLOW_HPP
// cut here
// using namespace std;
#define rep(i,n) for(int i=0;i<n;i++)
#define rng(i,c,n) for(int i=c;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define fi first
#define se second
#define pb push_back
#define sz(a) (int)a.size()
#define vec(...) vector<__VA_ARGS__>
#define _3yqVz8E ios::sync_with_stdio(0),cin.tie(0)
typedef long long ll;
using pii=pair<int,int>;
using vi=vector<int>;
void print(){cout<<'\n';}
template<class h,class...t>
void print(const h&v,const t&...u){cout<<v<<' ',print(u...);}
// e

signed main(){
_3yqVz8E;
	int n,m;
	cin>>n>>m;
	vec(pii) es;
	rep(i,m){
		int u,v;
		cin>>u>>v;
		u-=1,v-=1;
		es.pb({u,v});
	}
	atcoder::mf_graph<int> mf(2*n+2);
	for(auto p:es){
		mf.add_edge(p.fi,p.se+n,1);
	}
	int s=2*n,t=2*n+1;
	rep(v,n){
		mf.add_edge(s,v,1);
		mf.add_edge(v+n,t,1);
	}
	vi usd(n,0);
	int flow=mf.flow(s,t);
	auto edges=mf.edges();
	for(auto e:edges){
		if(e.from<n and e.flow){
			usd[e.from]=e.to;
		}
	}
	auto g=mf.g;
	rep(v,n)
	{
		// int v=1;
		if(usd[v]==0){
			cout<<"Mirko\n";
		}else{
			mf.g=g;
			int to=usd[v];
			rep(i,sz(mf.g[to])){
				if(mf.g[to][i].to!=v){
					// print("ho");
					mf.g[to][i].cap=1;
				}
			}
			rep(i,sz(mf.g[v])){
				mf.g[v][i].cap=0;
			}
			if(mf.flow(s,t)){
				cout<<"Mirko\n";
			}else{
				cout<<"Slavko\n";
			}
		}
	}
}

Compilation message

planinarenje.cpp: In function 'int main()':
planinarenje.cpp:212:6: warning: unused variable 'flow' [-Wunused-variable]
  212 |  int flow=mf.flow(s,t);
      |      ^~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 324 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 316 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 468 KB Output is correct
2 Correct 8 ms 524 KB Output is correct
3 Correct 10 ms 552 KB Output is correct
4 Correct 9 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 838 ms 2488 KB Output is correct
2 Correct 957 ms 2468 KB Output is correct
3 Correct 824 ms 2368 KB Output is correct
4 Correct 965 ms 2340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 724 KB Output is correct
2 Correct 10 ms 980 KB Output is correct
3 Correct 14 ms 808 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 724 KB Output is correct
2 Correct 49 ms 808 KB Output is correct
3 Correct 15 ms 804 KB Output is correct
4 Correct 8 ms 852 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 233 ms 1300 KB Output is correct
2 Correct 689 ms 2540 KB Output is correct
3 Correct 256 ms 1620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 221 ms 1464 KB Output is correct
2 Correct 456 ms 1956 KB Output is correct
3 Correct 166 ms 1272 KB Output is correct
4 Correct 20 ms 1080 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 369 ms 1788 KB Output is correct
2 Correct 205 ms 1364 KB Output is correct
3 Correct 463 ms 1904 KB Output is correct
4 Correct 75 ms 1136 KB Output is correct