Submission #645402

#TimeUsernameProblemLanguageResultExecution timeMemory
645402alvinpiterBitaro’s Party (JOI18_bitaro)C++17
14 / 100
2102 ms450084 KiB
/* 2018 JOI Spring Training Camp/Qualifying Trial Day 3 There are two ways to solve this problem, and we need to combine them: * In O(N), by using dynamic programming. dp[i] -> maximum number of jumps to reach destination from node i. * (N + M)*THRESHOLD, by precomputation. For each node, we store the top THRESHOLD furthest nodes from it. We solve the problem with the first approach whenever the Y is >= THRESHOLD. When doing so, the total complexity for answering all queries will be (N/THRESHOLD)*N. If Y < THRESHOLD, then we can use our precomputed value since we store the top THRESHOLD nodes from each node. Which means at least one of them is able to attend the party. */ #include<bits/stdc++.h> using namespace std; #define MAXN 100000 #define THRESHOLD 175 int N, M, Q, T, Y, C[MAXN + 3], canGo[MAXN + 3], dp[MAXN + 3]; vector<int> nxt[MAXN + 3]; vector<pair<int, int> > best[MAXN + 3]; // best[u] -> [ {numJump, who} ], means we can reach "u" from "who" with "numJump" jumps. int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cin >> N >> M >> Q; for (int i = 1; i <= M; i++) { int s, e; cin >> s >> e; nxt[s].push_back(e); } for (int i = 1; i <= N; i++) { canGo[i] = true; } for (int i = 1; i <= N; i++) { best[i].push_back({0, i}); } for (int i = 1; i <= N; i++) { sort(best[i].rbegin(), best[i].rend()); for (int j = 0; j < min((int) best[i].size(), THRESHOLD); j++) { int numJump = best[i][j].first, who = best[i][j].second; for (auto k: nxt[i]) { best[k].push_back({numJump + 1, who}); } } } for (int q = 1; q <= Q; q++) { cin >> T >> Y; for (int i = 1; i <= Y; i++) { cin >> C[i]; canGo[C[i]] = false; } if (Y >= THRESHOLD) { dp[T] = 0; for (int i = T - 1; i >= 1; i--) { dp[i] = -1; for (auto j: nxt[i]) { if (j <= T && dp[j] != -1) { dp[i] = max(dp[i], 1 + dp[j]); } } } int ans = -1; for (int i = 1; i <= T; i++) { if (canGo[i] && dp[i] != -1) { ans = max(ans, dp[i]); } } cout << ans << endl; } else { int ans = -1; for (auto [numJump, who]: best[T]) { if (canGo[who]) { ans = max(ans, numJump); } } cout << ans << endl; } // Reset for (int i = 1; i <= Y; i++) { canGo[C[i]] = true; } } }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...